A comparison between diffusion tensor imaging and generalized q-sampling imaging in the age prediction of healthy adults via machine learning approaches

Author:

Guo Yingying,Yang Xi,Yuan Zilong,Qiu Jianfeng,Lu WeizhaoORCID

Abstract

Abstract Objective. Brain age, which is predicted using neuroimaging data, has become an important biomarker in aging research. This study applied diffusion tensor imaging (DTI) and generalized q-sampling imaging (GQI) model to predict age respectively, with the purpose of evaluating which diffusion model is more accurate in estimating age and revealing age-related changes in the brain. Approach. Diffusion MRI data of 125 subjects from two sites were collected. Fractional anisotropy (FA) and quantitative anisotropy (QA) from the two diffusion models were calculated and were used as features of machine learning models. Sequential backward elimination algorithm was used for feature selection. Six machine learning approaches including linear regression, ridge regression, support vector regression (SVR) with linear kernel, quadratic kernel and radial basis function (RBF) kernel and feedforward neural network were used to predict age using FA and QA features respectively. Main results. Age predictions using FA features were more accurate than predictions using QA features for all the six machine learning algorithms. Post-hoc analysis revealed that FA was more sensitive to age-related white matter alterations in the brain. In addition, SVR with RBF kernel based on FA features achieved better performances than the competing algorithms with mean absolute error ranging from 7.74 to 10.54, mean square error (MSE) ranging from 87.79 to 150.86, and normalized MSE ranging from 0.05 to 0.14. Significance. FA from DTI model was more suitable than QA from GQI model in age prediction. FA metric was more sensitive to age-related white matter changes in the brain and FA of several brain regions could be used as white matter biomarkers in aging.

Funder

National Undergraduate Training Programs for Innovation and Entrepreneurship of China

Medicine and Health Science Development Plan of Shandong Province

Traditional Chinese Medicine Science and Technology Development Plan of Shandong Province

Academic Promotion Program of Shandong First Medical University

Taishan Scholars Program of Shandong Province

Science and Technology funding from Jinan

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3