Rapid motor fluctuations reveal short-timescale neurophysiological biomarkers of Parkinson’s disease

Author:

Ahn MinkyuORCID,Lee ShaneORCID,Lauro Peter MORCID,Schaeffer Erin L,Akbar Umer,Asaad Wael FORCID

Abstract

Abstract Objective. Identifying neural activity biomarkers of brain disease is essential to provide objective estimates of disease burden, obtain reliable feedback regarding therapeutic efficacy, and potentially to serve as a source of control for closed-loop neuromodulation. In Parkinson’s disease (PD), microelectrode recordings (MER) are routinely performed in the basal ganglia to guide electrode implantation for deep brain stimulation (DBS). While pathologically-excessive oscillatory activity has been observed and linked to PD motor dysfunction broadly, the extent to which these signals provide quantitative information about disease expression and fluctuations, particularly at short timescales, is unknown. Furthermore, the degree to which informative signal features are similar or different across patients has not been rigorously investigated. We sought to determine the extent to which motor error in PD across patients can be decoded on a rapid timescale using spectral features of neural activity. Approach. Here, we recorded neural activity from the subthalamic nucleus (STN) of subjects with PD undergoing awake DBS surgery while they performed an objective, continuous behavioral assessment that synthesized heterogenous PD motor manifestations to generate a scalar measure of motor dysfunction at short timescales. We then leveraged natural motor performance variations as a ‘ground truth’ to identify corresponding neurophysiological biomarkers. Main results. Support vector machines using multi-spectral decoding of neural signals from the STN succeeded in tracking the degree of motor impairment at short timescales (as short as one second). Spectral power across a wide range of frequencies, beyond the classic ‘β’ oscillations, contributed to this decoding, and multi-spectral models consistently outperformed those generated using more isolated frequency bands. While generalized decoding models derived across subjects were able to estimate motor impairment, patient-specific models typically performed better. Significance. These results demonstrate that quantitative information about short-timescale PD motor dysfunction is available in STN neural activity, distributed across various patient-specific spectral components, such that an individualized approach will be critical to fully harness this information for optimal disease tracking and closed-loop neuromodulation.

Funder

Doris Duke Charitable Foundation

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3