Identification of impulsive adolescents with a functional near infrared spectroscopy (fNIRS) based decision support system

Author:

Erdoğan Sinem BurcuORCID,Yükselen Gülnaz,Yegül Mustafa Mert,Usanmaz Ruhi,Kıran Engin,Derman OrhanORCID,Akın Ata

Abstract

Abstract Background. The gold standard for diagnosing impulsivity relies on clinical interviews, behavioral questionnaires and rating scales which are highly subjective. Objective. The aim of this study was to develop a functional near infrared spectroscopy (fNIRS) based classification approach for correct identification of impulsive adolescents. Taking into account the multifaceted nature of impulsivity, we propose that combining informative features from clinical, behavioral and neurophysiological domains might better elucidate the neurobiological distinction underlying symptoms of impulsivity. Approach. Hemodynamic and behavioral information was collected from 38 impulsive adolescents and from 33 non-impulsive adolescents during a Stroop task with concurrent fNIRS recordings. Connectivity-based features were computed from the hemodynamic signals and a neural efficiency metric was computed by fusing the behavioral and connectivity-based features. We tested the efficacy of two commonly used supervised machine-learning methods, namely the support vector machines (SVM) and artificial neural networks (ANN) in discriminating impulsive adolescents from their non-impulsive peers when trained with multi-domain features. Wrapper method was adapted to identify the informative biomarkers in each domain. Classification accuracies of each algorithm were computed after 10 runs of a 10-fold cross-validation procedure, conducted for 7 different combinations of the 3-domain feature set. Main results. Both SVM and ANN achieved diagnostic accuracies above 90% when trained with Wrapper-selected clinical, behavioral and fNIRS derived features. SVM performed significantly higher than ANN in terms of the accuracy metric (92.2% and 90.16%, respectively, p = 0.005). Significance. Preliminary findings show the feasibility and applicability of both machine-learning based methods for correct identification of impulsive adolescents when trained with multi-domain data involving clinical interviews, fNIRS based biomarkers and neuropsychiatric test measures. The proposed automated classification approach holds promise for assisting the clinical practice of diagnosing impulsivity and other psychiatric disorders. Our results also pave the path for a computer-aided diagnosis perspective for rating the severity of impulsivity.

Funder

Scientific and Technological Research Council of Turkey

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Reference71 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3