Machine learning algorithm for decoding multiple subthalamic spike trains for speech brain–machine interfaces

Author:

Tankus ArielORCID,Solomon Lior,Aharony Yotam,Faust-Socher Achinoam,Strauss Ido

Abstract

Abstract Objective. The goal of this study is to decode the electrical activity of single neurons in the human subthalamic nucleus (STN) to infer the speech features that a person articulated, heard or imagined. We also aim to evaluate the amount of subthalamic neurons required for high accuracy decoding suitable for real-life speech brain-machine interfaces (BMI). Approach. We intraoperatively recorded single-neuron activity in the STN of 21 neurosurgical patients with Parkinson’s disease undergoing implantation of deep brain stimulator while patients produced, perceived or imagined the five monophthongal vowel sounds. Our decoder is based on machine learning algorithms that dynamically learn specific features of the speech-related firing patterns. Main results. In an extensive comparison of algorithms, our sparse decoder (‘SpaDe’), based on sparse decomposition of the high dimensional neuronal feature space, outperformed the other algorithms in all three conditions: production, perception and imagery. For speech production, our algorithm, Spade, predicted all vowels correctly (accuracy: 100%; chance level: 20%). For perception accuracy was 96%, and for imagery: 88%. The accuracy of Spade showed a linear behavior in the amount of neurons for the perception data, and even faster for production or imagery. Significance. Our study demonstrates that the information encoded by single neurons in the STN about the production, perception and imagery of speech is suitable for high-accuracy decoding. It is therefore an important step towards BMIs for restoration of speech faculties that bears an enormous potential to alleviate the suffering of completely paralyzed (‘locked-in’) patients and allow them to communicate again with their environment. Moreover, our research indicates how many subthalamic neurons may be necessary to achieve each level of decoding accuracy, which is of supreme importance for a neurosurgeon planning the implantation of a speech BMI.

Funder

Israel Ministry of Science and Technology

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3