Towards high-accuracy classifying attention-deficit/hyperactivity disorders using CNN-LSTM model

Author:

Wang Cheng,Wang XinORCID,Jing Xiaobei,Yokoi Hiroshi,Huang Weimin,Zhu Mingxing,Chen ShixiongORCID,Li Guanglin

Abstract

Abstract Objective. The neurocognitive attention functions involve the cooperation of multiple brain regions, and the defects in the cooperation will lead to attention-deficit/hyperactivity disorder (ADHD), which is one of the most common neuropsychiatric disorders for children. The current ADHD diagnosis is mainly based on a subjective evaluation that is easily biased by the experience of the clinicians and lacks the support of objective indicators. The purpose of this study is to propose a method that can effectively identify children with ADHD. Approach. In this study, we proposed a CNN-LSTM model to solve the three-class problems of classifying ADHD, attention deficit disorder (ADD) and healthy children, based on a public electroencephalogram (EEG) dataset that includes event-related potential (ERP) EEG signals of 144 children. The convolution visualization and saliency map methods were used to observe the features automatically extracted by the proposed model, which could intuitively explain how the model distinguished different groups. Main results. The results showed that our CNN-LSTM model could achieve an accuracy as high as 98.23% in a five-fold cross-validation method, which was significantly better than the current state-of-the-art CNN models. The features extracted by the proposed model were mainly located in the frontal and central areas, with significant differences in the time period mappings among the three different groups. The P300 and contingent negative variation (CNV) in the frontal lobe had the largest decrease in the healthy control (HC) group, and the ADD group had the smallest decrease. In the central area, only the HC group had a significant negative oscillation of CNV waves. Significance. The results of this study suggest that the CNN-LSTM model can effectively identify children with ADHD and its subtypes. The visualized features automatically extracted by this model could better explain the differences in the ERP response among different groups, which is more convincing than previous studies, and it could be used as more reliable neural biomarkers to help with more accurate diagnosis in the clinics.

Funder

SIAT Innovation Program for Excellent Young Researchers

Science and Technology Planning Project of Shenzhen

Shenzhen Governmental Basic Research Grant

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3