Inferring population dynamics in macaque cortex

Author:

Meghanath Ganga,Jimenez Bryan,Makin Joseph GORCID

Abstract

Abstract Objective. The proliferation of multi-unit cortical recordings over the last two decades, especially in macaques and during motor-control tasks, has generated interest in neural ‘population dynamics’: the time evolution of neural activity across a group of neurons working together. A good model of these dynamics should be able to infer the activity of unobserved neurons within the same population and of the observed neurons at future times. Accordingly, Pandarinath and colleagues have introduced a benchmark to evaluate models on these two (and related) criteria: four data sets, each consisting of firing rates from a population of neurons, recorded from macaque cortex during movement-related tasks. Approach. Since this is a discriminative-learning task, we hypothesize that general-purpose architectures based on recurrent neural networks (RNNs) trained with masking can outperform more ‘bespoke’ models. To capture long-distance dependencies without sacrificing the autoregressive bias of recurrent networks, we also propose a novel, hybrid architecture (‘TERN’) that augments the RNN with self-attention, as in transformer networks. Main results. Our RNNs outperform all published models on all four data sets in the benchmark. The hybrid architecture improves performance further still. Pure transformer models fail to achieve this level of performance, either in our work or that of other groups. Significance. We argue that the autoregressive bias imposed by RNNs is critical for achieving the highest levels of performance, and establish the state of the art on the neural latents benchmark. We conclude, however, by proposing that the benchmark be augmented with an alternative evaluation of latent dynamics that favors generative over discriminative models like the ones we propose in this report.

Funder

School of Electrical and Computer Engineering, Purdue University

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Reference30 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3