Measuring and monitoring skill learning in closed-loop myoelectric hand prostheses using speed-accuracy tradeoffs

Author:

Mamidanna PranavORCID,Gholinezhad Shima,Farina DarioORCID,Dideriksen Jakob LundORCID,Dosen StrahinjaORCID

Abstract

Abstract Objective. Closed-loop myoelectric prostheses, which combine supplementary sensory feedback and electromyography (EMG) based control, hold the potential to narrow the divide between natural and bionic hands. The use of these devices, however, requires dedicated training. Therefore, it is crucial to develop methods that quantify how users acquire skilled control over their prostheses to effectively monitor skill progression and inform the development of interfaces that optimize this process. Approach. Building on theories of skill learning in human motor control, we measured speed-accuracy tradeoff functions (SAFs) to comprehensively characterize learning-induced changes in skill—as opposed to merely tracking changes in task success across training—facilitated by a closed-loop interface that combined proportional control and EMG feedback. Sixteen healthy participants and one individual with a transradial limb loss participated in a three-day experiment where they were instructed to perform the box-and-blocks task using a timed force-matching paradigm at four specified speeds to reach two target force levels, such that the SAF could be determined. Main results. We found that the participants’ accuracy increased in a similar way across all speeds we tested. Consequently, the shape of the SAF remained similar across days, at both force levels. Further, we observed that EMG feedback enabled participants to improve their motor execution in terms of reduced trial-by-trial variability, a hallmark of skilled behavior. We then fit a power law model of the SAF, and demonstrated how the model parameters could be used to identify and monitor changes in skill. Significance. We comprehensively characterized how an EMG feedback interface enabled skill acquisition, both at the level of task performance and movement execution. More generally, we believe that the proposed methods are effective for measuring and monitoring user skill progression in closed-loop prosthesis control.

Funder

Danmarks Frie Forskningsfond

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3