Nature-inspired saccadic-like electrical stimulation paradigm promotes sustained retinal ganglion cell responses by spatiotemporally alternating activation of contiguous multi-electrode patterns

Author:

Haq WadoodORCID,Basavaraju Sunetra,Speck Achim,Zrenner Eberhart

Abstract

Abstract Objective. Retinal electrical stimulation using multi-electrode arrays (MEAs) aims to restore visual object perception in blind patients. However, the rate and duration of the artificial visual sensations are limited due to the rapid response decay of the stimulated neurons. Hence, we investigated a novel nature-inspired saccadic-like stimulation paradigm (biomimetic) to evoke sustained retinal responses. For implementation, the macroelectrode was replaced by several contiguous microelectrodes and activated non-simultaneously but alternating topologically. Approach. MEAs with hexagonally arranged electrodes were utilized to simulate and record mouse retinal ganglion cells (RGCs). Two shapes were presented electrically using MEAs: a 6e-hexagon (six hexagonally arranged 10 µm electrodes; 6e-hexagon diameter: 80 µm) and a double-bar (180 µm spaced, 320 µm in length). Electrodes of each shape were activated in three different modes (simultaneous, circular, and biomimetic (‘zig-zag’)), stimulating at different frequencies (1–20 Hz). Main results. The biomimetic stimulation generated enhanced RGC responses increasing the activity rate by 87.78%. In the spatiotemporal context, the electrical representation of the 6e-hexagon produced sustained and local RGC responses (∼130 µm corresponding to ∼2.5° of the human visual angle) for up to 90 s at 10 Hz stimulation and resolved the electrically presented double-bar. In contrast, during conventional simultaneous stimulation, the responses were poor and declined within seconds. Similarly, the applicability of the biomimetic mode for retinal implants (7 × 8 pixels) was successfully demonstrated. An object shape impersonating a smile was presented electrically, and the recorded data were used to emulate the implant’s performance. The spatiotemporal pixel mapping of the activity produced a complete retinal image of the smile. Significance. The application of electrical stimulation in the biomimetic mode produced locally enhanced RGC responses with significantly reduced fading effects and yielded advanced spatiotemporal performance reflecting the presented electrode shapes in the mapped activity imprint. Therefore, it is likely that the RGC responses persist long enough to evoke visual perception and generate a seamless image, taking advantage of the flicker fusion. Hence, replacing the implant’s macroelectrodes with microelectrodes and their activation in a topologically alternating biomimetic fashion may overcome the patient’s perceptual image fading, thereby enhancing the spatiotemporal characteristics of artificial vision.

Funder

Hector Foundation

Tistou and Charlotte Foundation

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3