Enhancing gesture decoding performance using signals from posterior parietal cortex: a stereo-electroencephalograhy (SEEG) study

Author:

Wang MengORCID,Li GuangyeORCID,Jiang Shize,Wei Zixuan,Hu Jie,Chen Liang,Zhang Dingguo

Abstract

Abstract Objective. Hand movement is a crucial function for humans’ daily life. Developing brain-machine interface (BMI) to control a robotic hand by brain signals would help the severely paralyzed people partially regain the functional independence. Previous intracranial electroencephalography (iEEG)-based BMIs towards gesture decoding mostly used neural signals from the primary sensorimotor cortex while ignoring the hand movement related signals from posterior parietal cortex (PPC). Here, we propose combining iEEG recordings from PPC with that from primary sensorimotor cortex to enhance the gesture decoding performance of iEEG-based BMI. Approach. Stereoelectroencephalography (SEEG) signals from 25 epilepsy subjects were recorded when they performed a three-class hand gesture task. Across all 25 subjects, we identified 524, 114 and 221 electrodes from three regions of interest (ROIs), including PPC, postcentral cortex (POC) and precentral cortex (PRC), respectively. Based on the time-varying high gamma power (55-150 Hz) of SEEG signal, both the general activation in the task and the fine selectivity to gestures of each electrode in these ROIs along time was evaluated by the coefficient of determination r 2. According to the activation along time, we further assessed the first activation time of each ROI. Finally, the decoding accuracy for gestures was obtained by linear support vector machine classifier to comparatively explore if the PPC will assist PRC and POC for gesture decoding. Main results. We find that a majority(L: > 60%, R: > 40%) of electrodes in all the three ROIs present significant activation during the task. A large scale temporal activation sequence exists among the ROIs, where PPC activates first, PRC second and POC last. Among the activated electrodes, 15% (PRC), 26% (POC) and 4% (left PPC) of electrodes are significantly selective to gestures. Moreover, decoding accuracy obtained by combining the selective electrodes from three ROIs together is 5%, 3.6%, and 8% higher than that from only PRC and POC when decoding features across, before, and after the movement onset, were used. Significance. This is the first human iEEG study demonstrating that PPC contains neural information about fine hand movement, supporting the role of PPC in hand shape encoding. Combining PPC with primary sensorimotor cortex can provide more information to improve the gesture decoding performance. Our results suggest that PPC could be a rich neural source for iEEG-based BMI. Our findings also demonstrate the early involvement of human PPC in visuomotor task and thus may provide additional implications for further scientific research and BMI applications.

Funder

Science and Technology Commission of Shanghai Municipality

National Natural Science Foundation of China

Shanghai Municipal Commission of Health and Family Planning

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3