A multimodal approach to capture post-stroke temporal dynamics of recovery

Author:

Pierella CamillaORCID,Pirondini Elvira,Kinany Nawal,Coscia Martina,Giang ChristianORCID,Miehlbradt Jenifer,Magnin Cécile,Nicolo PierreORCID,Dalise StefaniaORCID,Sgherri Giada,Chisari Carmelo,Van De Ville Dimitri,Guggisberg Adrian,Micera Silvestro

Abstract

Abstract Objective. Several training programs have been developed in the past to restore motor functions after stroke. Their efficacy strongly relies on the possibility to assess individual levels of impairment and recovery rate. However, commonly used clinical scales rely mainly on subjective functional assessments and are not able to provide a complete description of patients’ neuro-biomechanical status. Therefore, current clinical tests should be integrated with specific physiological measurements, i.e. kinematic, muscular, and brain activities, to obtain a deep understanding of patients’ condition and of its evolution through time and rehabilitative intervention. Approach. We proposed a multivariate approach for motor control assessment that simultaneously measures kinematic, muscle and brain activity and combines the main physiological variables extracted from these signals using principal component analysis (PCA). We tested it in a group of six sub-acute stroke subjects evaluated extensively before and after a four-week training, using an upper-limb exoskeleton while performing a reaching task, along with brain and muscle measurements. Main results. After training, all subjects exhibited clinical improvements correlating with changes in kinematics, muscle synergies, and spinal maps. Movements were smoother and faster, while muscle synergies increased in numbers and became more similar to those of the healthy controls. These findings were coupled with changes in cortical oscillations depicted by EEG-topographies. When combining these physiological variables using PCA, we found that (i) patients’ kinematic and spinal maps parameters improved continuously during the four assessments; (ii) muscle coordination augmented mainly during treatment, and (iii) brain oscillations recovered mostly pre-treatment as a consequence of short-term subacute changes. Significance. Although these are preliminary results, the proposed approach has the potential of identifying significant biomarkers for patient stratification as well as for the design of more effective rehabilitation protocols.

Funder

Fondation Bertarelli

Regione Toscana: FAS Salute 2014

Wyss Center for Bio and Neuroengineering

Strategic Focal Area ‘Personalized Health and Related Technologies (PHRT, project PHRT205)’ of the ETH Domain

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3