A cross-dataset adaptive domain selection transfer learning framework for motor imagery-based brain-computer interfaces

Author:

Jin JingORCID,Bai GuanglianORCID,Xu Ren,Qin Ke,Sun Hao,Wang Xingyu,Cichocki Andrzej

Abstract

Abstract Objective. In brain-computer interfaces (BCIs) that utilize motor imagery (MI), minimizing calibration time has become increasingly critical for real-world applications. Recently, transfer learning (TL) has been shown to effectively reduce the calibration time in MI-BCIs. However, variations in data distribution among subjects can significantly influence the performance of TL in MI-BCIs. Approach. We propose a cross-dataset adaptive domain selection transfer learning framework that integrates domain selection, data alignment, and an enhanced common spatial pattern (CSP) algorithm. Our approach uses a huge dataset of 109 subjects as the source domain. We begin by identifying non-BCI illiterate subjects from this huge dataset, then determine the source domain subjects most closely aligned with the target subjects using maximum mean discrepancy. After undergoing Euclidean alignment processing, features are extracted by multiple composite CSP. The final classification is carried out using the support vector machine. Main results. Our findings indicate that the proposed technique outperforms existing methods, achieving classification accuracies of 75.05% and 76.82% in two cross-dataset experiments, respectively. Significance. By reducing the need for extensive training data, yet maintaining high accuracy, our method optimizes the practical implementation of MI-BCIs.

Funder

the Program of Introducing Talents of Discipline to Universities through the 111 Project

National Government GuidedSpecial Funds for Local Science and Technology Development

the Polish National Science Center

Shanghai Municipal Science and Technology Major Project

the Grant National Natural Science Foundation of China

STI 2030-major projects

Project of Jiangsu Province Science and Technology Plan Special Fund in 2022

the ShuGuang Project supported by the Shanghai Municipal Education Commission and the Shanghai Education Development Foundation

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3