Decoding working-memory load during n-back task performance from high channel fNIRS data

Author:

Kothe ChristianORCID,Hanada GrantORCID,Mullen SeanORCID,Mullen TimORCID

Abstract

Abstract Objective. Functional near-infrared spectroscopy (fNIRS) can measure neural activity through blood oxygenation changes in the brain in a wearable form factor, enabling unique applications for research in and outside the lab and in practical occupational settings. fNIRS has proven capable of measuring cognitive states such as mental workload, often using machine learning (ML) based brain–computer interfaces (BCIs). To date, this research has largely relied on probes with channel counts from under ten to several hundred, although recently a new class of wearable NIRS devices featuring thousands of channels has emerged. This poses unique challenges for ML classification, as fNIRS is typically limited by few training trials which results in severely under-determined estimation problems. So far, it is not well understood how such high-resolution data is best leveraged in practical BCIs and whether state-of-the-art or better performance can be achieved. Approach. To address these questions, we propose an ML strategy to classify working-memory load that relies on spatio-temporal regularization and transfer learning from other subjects in a combination that, to our knowledge, has not been used in previous fNIRS BCIs. The approach can be interpreted as an end-to-end generalized linear model and allows for a high degree of interpretability using channel-level or cortical imaging approaches. Main results. We show that using the proposed methodology, it is possible to achieve state-of-the-art decoding performance with high-resolution fNIRS data. We also replicated several state-of-the-art approaches on our dataset of 43 participants wearing a 3198 dual-channel NIRS device while performing the n-Back task and show that these existing methodologies struggle in the high-channel regime and are largely outperformed by the proposed pipeline. Significance. Our approach helps establish high-channel NIRS devices as a viable platform for state-of-the-art BCI and opens new applications using this class of headset while also enabling high-resolution model imaging and interpretation.

Funder

Meta Reality Labs

Publisher

IOP Publishing

Reference63 articles.

1. Multitask learning for brain-computer interfaces;Alamgir,2010

2. Artefact subspace reconstruction for both EEG and fNIRS co-registred signals;Aloui,2021

3. Scalable, modular continuous wave functional near-infrared spectroscopy system (Spotlight);Anaya;J. Biomed. Opt.,2023

4. Single-trial classification of NIRS data from prefrontal cortex during working memory tasks. In;Ang,2014

5. Multi-task feature learning;Argyriou,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3