Evoked compound action potentials during spinal cord stimulation: effects of posture and pulse width on signal features and neural activation within the spinal cord

Author:

Brucker-Hahn Meagan KORCID,Zander Hans JORCID,Will Andrew J,Vallabh Jayesh C,Wolff Jason S,Dinsmoor David AORCID,Lempka Scott FORCID

Abstract

Abstract Objective. Evoked compound action potential (ECAP) recordings have emerged as a quantitative measure of the neural response during spinal cord stimulation (SCS) to treat pain. However, utilization of ECAP recordings to optimize stimulation efficacy requires an understanding of the factors influencing these recordings and their relationship to the underlying neural activation. Approach. We acquired a library of ECAP recordings from 56 patients over a wide assortment of postures and stimulation parameters, and then processed these signals to quantify several aspects of these recordings (e.g., ECAP threshold (ET), amplitude, latency, growth rate). We compared our experimental findings against a computational model that examined the effect of variable distances between the spinal cord and the SCS electrodes. Main results. Postural shifts strongly influenced the experimental ECAP recordings, with a 65.7% lower ET and 178.5% higher growth rate when supine versus seated. The computational model exhibited similar trends, with a 71.9% lower ET and 231.5% higher growth rate for a 2.0 mm cerebrospinal fluid (CSF) layer (representing a supine posture) versus a 4.4 mm CSF layer (representing a prone posture). Furthermore, the computational model demonstrated that constant ECAP amplitudes may not equate to a constant degree of neural activation. Significance. These results demonstrate large variability across all ECAP metrics and the inability of a constant ECAP amplitude to provide constant neural activation. These results are critical to improve the delivery, efficacy, and robustness of clinical SCS technologies utilizing these ECAP recordings to provide closed-loop stimulation.

Funder

Medtronic plc

University of Michigan

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Measures of Dosage for Spinal-Cord Electrical Stimulation: Review and Proposal;IEEE Transactions on Neural Systems and Rehabilitation Engineering;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3