A cross-scenario and cross-subject domain adaptation method for driving fatigue detection

Author:

Luo YunORCID,Liu WeiORCID,Li Hanqi,Lu Yong,Lu Bao-Liang

Abstract

Abstract Objective. The scarcity of electroencephalogram (EEG) data, coupled with individual and scenario variations, leads to considerable challenges in real-world EEG-based driver fatigue detection. We propose a domain adaptation method that utilizes EEG data collected from a laboratory to supplement real-world EEG data and constructs a cross-scenario and cross-subject driver fatigue detection model for real-world scenarios. Approach. First, we collect EEG data from subjects participating in a driving experiment conducted in both laboratory and real-world scenarios. To address the issue of data scarcity, we build a real-world fatigued driving detection model by integrating the real-world data with the laboratory data. Then, we propose a method named cross-scenario and cross-subject domain adaptation (CS2DA), which aims to eliminate the domain shift problem caused by individual variances and scenario differences. Adversarial learning is adopted to extract the common features observed across different subjects within the same scenario. The multikernel maximum mean discrepancy (MK-MMD) method is applied to further minimize scenario differences. Additionally, we propose a conditional MK-MMD constraint to better utilize label information. Finally, we use seven rules to fuse the predicted labels. Main results. We evaluate the CS2DA method through extensive experiments conducted on the two EEG datasets created in this work: the SEED-VLA and the SEED-VRW datasets. Different domain adaptation methods are used to construct a real-world fatigued driving detection model using data from laboratory and real-world scenarios, as well as a combination of both. Our findings show that the proposed CS2DA method outperforms the existing traditional and adversarial learning-based domain adaptation approaches. We also find that combining data from both laboratory and real-world scenarios improves the performance of the model. Significance. This study contributes two EEG-based fatigue driving datasets and demonstrates that the proposed CS2DA method can effectively enhance the performance of a real-world fatigued driving detection model.

Funder

National Natural Science Foundation of China

GuangCi Professorship Program of RuiJin Hospital Shanghai Jiao Tong University School of Medicine

Shanghai Municipal Science and Technology Major Project

Shanghai Pujiang Program

Shanghai Municipal Science and Technology Artificial Intelligence Support Special Project

STI 2030- Major Projects

Publisher

IOP Publishing

Reference59 articles.

1. Driver drowsiness estimation using EEG signals with a dynamical encoder-decoder modeling framework;Arefnezhad;Sci. Rep.,2022

2. Wasserstein GAN;Arjovsky,2017

3. Driver drowsiness detection using EEG power spectrum analysis;Awais,2014

4. Comparison of fatigue related road traffic crashes on the national highways and motorways in pakistan;Azam;J. Eng. Appl. Sci.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3