Diagnosis of major depressive disorder using whole-brain effective connectivity networks derived from resting-state functional MRI

Author:

Guo Man,Wang Tiancheng,Zhang Zhe,Chen Nan,Li Yongchao,Wang Yin,Yao Zhijun,Hu BinORCID

Abstract

Abstract Objective. It is important to improve identification accuracy for possible early intervention of major depressive disorder (MDD). Recently, effective connectivity (EC), defined as the directed influence of spatially distant brain regions on each other, has been used to find the dysfunctional organization of brain networks in MDD. However, little is known about the ability of whole-brain resting-state EC features in identification of MDD. Here, we employed EC by whole-brain analysis to perform MDD diagnosis. Approach. In this study, we proposed a high-order EC network capturing high-level relationship among multiple brain regions to discriminate 57 patients with MDD from 60 normal controls (NC). In high-order EC networks and traditional low-order EC networks, we utilized the network properties and connection strength for classification. Meanwhile, the support vector machine (SVM) was employed for model training. Generalization of the results was supported by 10-fold cross-validation. Main results. The classification results showed that the high-order EC network performed better than the low-order EC network in diagnosing MDD, and the integration of these two networks yielded the best classification precision with 95% accuracy, 98.83% sensitivity, and 91% specificity. Furthermore, we found that the abnormal connections of high-order EC in MDD patients involved multiple widely concerned functional subnets, particularly the default mode network and the cerebellar network. Significance. The current study indicates whole-brain EC networks, measured by our high-order method, may be promising biomarkers for clinical diagnosis of MDD, and the complementary between high-order and low-order EC will better guide patients to get early interventions as well as treatments.

Funder

National Basic Research Program of China

Program of Beijing Municipal Science & Technology Commission

The Gansu Science and Technology Program

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3