Self-supervised motor imagery EEG recognition model based on 1-D MTCNN-LSTM network

Author:

Cunlin HuORCID,Ye Ye,Nenggang Xie

Abstract

Abstract Objective. Aiming for the research on the brain–computer interface (BCI), it is crucial to design a MI-EEG recognition model, possessing a high classification accuracy and strong generalization ability, and not relying on a large number of labeled training samples. Approach. In this paper, we propose a self-supervised MI-EEG recognition method based on self-supervised learning with one-dimensional multi-task convolutional neural networks and long short-term memory (1-D MTCNN-LSTM). The model is divided into two stages: signal transform identification stage and pattern recognition stage. In the signal transform recognition phase, the signal transform dataset is recognized by the upstream 1-D MTCNN-LSTM network model. Subsequently, the backbone network from the signal transform identification phase is transferred to the pattern recognition phase. Then, it is fine-tuned using a trace amount of labeled data to finally obtain the motion recognition model. Main results. The upstream stage of this study achieves more than 95% recognition accuracy for EEG signal transforms, up to 100%. For MI-EEG pattern recognition, the model obtained recognition accuracies of 82.04% and 87.14% with F1 scores of 0.7856 and 0.839 on the datasets of BCIC-IV-2b and BCIC-IV-2a. Significance. The improved accuracy proves the superiority of the proposed method. It is prospected to be a method for accurate classification of MI-EEG in the BCI system.

Funder

The Health Research Project of Anhui Province, China

The University Synergy Innovation Program of Anhui Province of China

Scientific Research Foundation of Education Department of Anhui Province, China

Anhui Provincial Education Department, China

Anhui Medical University Research Fund Project, Anhui Province, China

The Health Research Project of Ma‘anshan City, Anhui Province, China

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3