Multi-scale discriminative regions analysis in FDG-PET imaging for early diagnosis of Alzheimer’s disease

Author:

Zhang Jin,He XiaohaiORCID,Qing Linbo,Xu Yining,Liu Yan,Chen Honggang

Abstract

Abstract Objective. Alzheimer’s disease (AD) is a degenerative brain disorder, one of the main causes of death in elderly people, so early diagnosis of AD is vital to prompt access to medication and medical care. Fluorodeoxyglucose positron emission tomography (FDG-PET) proves to be effective to help understand neurological changes via measuring glucose uptake. Our aim is to explore information-rich regions of FDG-PET imaging, which enhance the accuracy and interpretability of AD-related diagnosis. Approach. We develop a novel method for early diagnosis of AD based on multi-scale discriminative regions in FDG-PET imaging, which considers the diagnosis interpretability. Specifically, a multi-scale region localization module is discussed to automatically identify disease-related discriminative regions in full-volume FDG-PET images in an unsupervised manner, upon which a confidence score is designed to evaluate the prioritization of regions according to the density distribution of anomalies. Then, the proposed multi-scale region classification module adaptively fuses multi-scale region representations and makes decision fusion, which not only reduces useless information but also offers complementary information. Most of previous methods concentrate on discriminating AD from cognitively normal (CN), while mild cognitive impairment, a transitional state, facilitates early diagnosis. Therefore, our method is further applied to multiple AD-related diagnosis tasks, not limited to AD vs. CN. Main results. Experimental results on the Alzheimer’s Disease Neuroimaging Initiative dataset show that the proposed method achieves superior performance over state-of-the-art FDG-PET-based approaches. Besides, some cerebral cortices highlighted by extracted regions cohere with medical research, further demonstrating the superiority. Significance. This work offers an effective method to achieve AD diagnosis and detect disease-affected regions in FDG-PET imaging. Our results could be beneficial for providing an additional opinion on the clinical diagnosis.

Funder

Chengdu Major Technology Application Demonstration Project

the Fundamental Research Funds for the Central Universities

the Sichuan Science and Technology Program

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Reference52 articles.

1. Alzheimer’s disease: pathogenesis, diagnostics and therapeutics;Tiwari;Int. J. Nanomed.,2019

2. Comparison of nine tractography algorithms for detecting abnormal structural brain networks in Alzheimer’s disease;Zhan;Front. Aging Neurosci.,2015

3. Multi-view classification for identification of Alzheimer’s disease;Zhu,2015

4. Boosting Alzheimer disease diagnosis using pet images;Silveira,2010

5. 2021 Alzheimer’s disease facts and figures;Alzheimer’s Dementia,2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3