Data augmentation for enhancing EEG-based emotion recognition with deep generative models

Author:

Luo YunORCID,Zhu Li-Zhen,Wan Zi-Yu,Lu Bao-LiangORCID

Abstract

Abstract Objective. The data scarcity problem in emotion recognition from electroencephalography (EEG) leads to difficulty in building an affective model with high accuracy using machine learning algorithms or deep neural networks. Inspired by emerging deep generative models, we propose three methods for augmenting EEG training data to enhance the performance of emotion recognition models. Approach. Our proposed methods are based on two deep generative models, variational autoencoder (VAE) and generative adversarial network (GAN), and two data augmentation ways, full and partial usage strategies. For the full usage strategy, all of the generated data are augmented to the training dataset without judging the quality of the generated data, while for the partial usage, only high-quality data are selected and appended to the training dataset. These three methods are called conditional Wasserstein GAN (cWGAN), selective VAE (sVAE), and selective WGAN (sWGAN). Main results. To evaluate the effectiveness of these proposed methods, we perform a systematic experimental study on two public EEG datasets for emotion recognition, namely, SEED and DEAP. We first generate realistic-like EEG training data in two forms: power spectral density and differential entropy. Then, we augment the original training datasets with a different number of generated realistic-like EEG data. Finally, we train support vector machines and deep neural networks with shortcut layers to build affective models using the original and augmented training datasets. The experimental results demonstrate that our proposed data augmentation methods based on generative models outperform the existing data augmentation approaches such as conditional VAE, Gaussian noise, and rotational data augmentation. We also observe that the number of generated data should be less than 10 times of the original training dataset to achieve the best performance. Significance. The augmented training datasets produced by our proposed sWGAN method significantly enhance the performance of EEG-based emotion recognition models.

Funder

National Natural Science Foundation of China

111 Project

National Key Research and Development Program of China

SJTU Trans-med Awards Research

Fundamental Research Funds for the Central Universities

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Reference63 articles.

1. Emotions recognition using EEG signals: A survey;Alarcao;IEEE Trans. Affective Computing,2017

2. Depression and implicit emotion processing: An EEG study;Bocharov;Neurophysiol. Clinique,2017

Cited by 95 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3