Improving the performance of P300-based BCIs by mitigating the effects of stimuli-related evoked potentials through regularized spatial filtering

Author:

Mobaien AliORCID,Boostani RezaORCID,Sanei Saeid

Abstract

Abstract Objective. the P300-based brain–computer interface (BCI) establishes a communication channel between the mind and a computer by translating brain signals into commands. These systems typically employ a visual oddball paradigm, where different objects (linked to specific commands) are randomly and frequently intensified. Upon observing the target object, users experience an elicitation of a P300 event-related potential in their electroencephalography (EEG). However, detecting the P300 signal can be challenging due to its very low signal-to-noise ratio (SNR), often compromised by the sequence of visual evoked potentials (VEPs) generated in the occipital regions of the brain in response to periodic visual stimuli. While various approaches have been explored to enhance the SNR of P300 signals, the impact of VEPs has been largely overlooked. The main objective of this study is to investigate how VEPs impact P300-based BCIs. Subsequently, the study aims to propose a method for EEG spatial filtering to alleviate the effect of VEPs and enhance the overall performance of these BCIs. Approach. our approach entails analyzing recorded EEG signals from visual P300-based BCIs through temporal, spectral, and spatial analysis techniques to identify the impact of VEPs. Subsequently, we introduce a regularized version of the xDAWN algorithm, a well-established spatial filter known for enhancing single-trial P300s. This aims to simultaneously enhance P300 signals and suppress VEPs, contributing to an improved overall signal quality. Main results. analyzing EEG signals shows that VEPs can significantly contaminate P300 signals, resulting in a decrease in the overall performance of P300-based BCIs. However, our proposed method for simultaneous enhancement of P300 and suppression of VEPs demonstrates improved performance in P300-based BCIs. This improvement is verified through several experiments conducted with real P300 data. Significance. this study focuses on the effects of VEPs on the performance of P300-based BCIs, a problem that has not been adequately addressed in previous studies. It opens up a new path for investigating these BCIs. Moreover, the proposed spatial filtering technique has the potential to further enhance the performance of these systems.

Publisher

IOP Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3