A hybrid method for real-time stimulation artefact removal during functional electrical stimulation with time-variant parameters

Author:

Bi Zheng-YangORCID,Zhou Yu-Xuan,Xie Chen-Xi,Wang Hai-Peng,Wang Hong-Xing,Wang Bi-Lei,Huang Jia,Lü Xiao-Ying,Wang Zhi-Gong

Abstract

Abstract Objective. In this study, a hybrid method combining hardware and software architecture is proposed to remove stimulation artefacts (SAs) and extract the volitional surface electromyography (sEMG) in real time during functional electrical stimulations (FES) with time-variant parameters. Approach. First, an sEMG detection front-end (DFE) combining fast recovery, detector and stimulator isolation and blanking is developed and is capable of preventing DFE saturation with a blanking time of 7.6 ms. The fragment between the present stimulus and previous stimulus is set as an SA fragment. Second, an SA database is established to provide six high-similarity templates with the current SA fragment. The SA fragment will be de-artefacted by a 6th-order Gram–Schmidt (GS) algorithm, a template-subtracting method, using the provided templates, and this database-based GS algorithm is called DBGS. The provided templates are previously collected SA fragments with the same or a similar evoking FES intensity to that of the current SA fragment, and the lengths of the templates are longer than that of the current SA fragment. After denoising, the sEMG will be extracted, and the current SA fragment will be added to the SA database. The prototype system based on DBGS was tested on eight able-bodied volunteers and three individuals with stroke to verify its capacity for stimulation removal and sEMG extraction. Results. The average stimulus artefact attenuation factor, SA index and correlation coefficient between clean sEMG and extracted sEMG for 6th-order DBGS were 12.77 ± 0.85 dB, 1.82 ± 0.37 dB and 0.84 ± 0.33 dB, respectively, which were significantly higher than those for empirical mode decomposition combined with notch filters, pulse-triggered GS algorithm, 1st-order and 3rd-order DBGS. The sEMG-torque correlation coefficients were 0.78 ± 0.05 and 0.48 ± 0.11 for able-bodied volunteers and individuals with stroke, respectively. Significance. The proposed hybrid method can extract sEMG during dynamic FES in real time.

Funder

National Natural Science Foundation of China

the Provincial Natural Science Foundation of Jiangsu Province

the Science & Technology Pillar Program of Jiangsu Province

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Radial extracorporeal shock wave therapy as an additional treatment modality for spastic equinus deformity in chronic hemiplegic patients. A randomized controlled study;Disability and Rehabilitation;2023-11-05

2. A PCA Based Artifact Removal Algorithm for Neural Signal Acquisition with kS/s Sampling Rate;2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC);2023-07-24

3. Development of Myoelectric Control Module for Prosthetic Hand with Artifact Removal during Sensory Electrical Stimulation;Proceedings of the 15th International Joint Conference on Biomedical Engineering Systems and Technologies;2022

4. Sensory Feedback for Upper-Limb Prostheses: Opportunities and Barriers;IEEE Transactions on Neural Systems and Rehabilitation Engineering;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3