Decoding working memory task condition using magnetoencephalography source level long-range phase coupling patterns

Author:

Syrjälä JaakkoORCID,Basti AlessioORCID,Guidotti RobertoORCID,Marzetti LauraORCID,Pizzella VittorioORCID

Abstract

Abstract Objective. The objective of the study is to identify phase coupling patterns that are shared across subjects via a machine learning approach that utilises source space magnetoencephalography (MEG) phase coupling data from a working memory (WM) task. Indeed, phase coupling of neural oscillations is putatively a key factor for communication between distant brain areas and is therefore crucial in performing cognitive tasks, including WM. Previous studies investigating phase coupling during cognitive tasks have often focused on a few a priori selected brain areas or a specific frequency band, and the need for data-driven approaches has been recognised. Machine learning techniques have emerged as valuable tools for the analysis of neuroimaging data since they catch fine-grained differences in the multivariate signal distribution. Here, we expect that these techniques applied to MEG phase couplings can reveal WM-related processes that are shared across individuals. Approach. We analysed WM data collected as part of the Human Connectome Project. The MEG data were collected while subjects (n = 83) performed N-back WM tasks in two different conditions, namely 2-back (WM condition) and 0-back (control condition). We estimated phase coupling patterns (multivariate phase slope index) for both conditions and for theta, alpha, beta, and gamma bands. The obtained phase coupling data were then used to train a linear support vector machine in order to classify which task condition the subject was performing with an across-subject cross-validation approach. The classification was performed separately based on the data from individual frequency bands and with all bands combined (multiband). Finally, we evaluated the relative importance of the different features (phase couplings) for classification by the means of feature selection probability. Main results. The WM condition and control condition were successfully classified based on the phase coupling patterns in the theta (62% accuracy) and alpha bands (60% accuracy) separately. Importantly, the multiband classification showed that phase coupling patterns not only in the theta and alpha but also in the gamma bands are related to WM processing, as testified by improvement in classification performance (71%). Significance. Our study successfully decoded WM tasks using MEG source space functional connectivity. Our approach, combining across-subject classification and a multidimensional metric recently developed by our group, is able to detect patterns of connectivity that are shared across individuals. In other words, the results are generalisable to new individuals and allow meaningful interpretation of task-relevant phase coupling patterns.

Funder

H2020 Marie Skłodowska-Curie Actions

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3