Motor unit distribution and recruitment in spastic and non-spastic bilateral biceps brachii muscles of chronic stroke survivors

Author:

Liu Yang,Chen Yen-Ting,Zhang Chuan,Zhou PingORCID,Li Sheng,Zhang YingchunORCID

Abstract

Abstract Objective. This study aims to characterize the motor units (MUs) distribution and recruitment pattern in the spastic and non-spastic bilateral biceps brachii muscles (BBMs) of chronic stroke survivors. Approach. High-density surface electromyography (HD-sEMG) signals were collected from both spastic and non-spastic BBMs of fourteen chronic stroke subjects during isometric elbow flexion at 10%, 30%, 50% and 100% maximal voluntary contractions (MVCs). By combining HD-sEMG decomposition and bioelectrical source imaging, MU innervation zones (MUIZs) of the decomposed MUs were first localized in the 3D space of spastic and non-spastic BBMs. The MU depth defined as the distance between the localized MUIZ and its normal projection on the skin surface was then normalized to the arm radius of each subject and averaged at given contraction level. The averaged MU depth at different contraction levels on a specific arm side (intra-side) and the bilateral depths under a specific contraction level (inter-side) were compared. Main results. The average depth of decomposed MUs increased with the contraction force and significant differences observed between 10% vs 50% (p < 0.0001), 10% vs 100% (p < 0.0001) and 30% vs 100% MVC (p = 0.0017) on the non-spastic side, indicating that larger MUs with higher recruitment threshold locate in deeper muscle regions. In contrast, no force-related difference in MU depth was observed on the spastic side, suggesting a disruption of orderly recruitment of MUs with increase of force level, or the MU denervation and the subsequent collateral reinnervation secondary to upper motor neuron lesions. Inter-side comparison demonstrated significant MU depth difference at 10% (p= 0.0048) and 100% force effort (p= 0.0026). Significance. This study represents the first effort to non-invasively characterize the MU distribution inside spastic and non-spastic bilateral BBM of chronic stroke patients by combining HD-sEMG recording, EMG signal decomposition and bioelectrical source imaging. The findings of this study advances our understanding regarding the neurophysiology of human muscles and the neuromuscular alterations following stroke. It may also offer important MU depth information for botulinum toxin injection in clinical post-stroke spasticity management.

Funder

National Center for Medical Rehabilitation Research

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Reference43 articles.

1. Distribution of different fibre types in human skeletal muscles. I. Method for the preparation and analysis of cross-sections of whole tibialis anterior;Henriksson-Larsén;Histochem. J.,1983

2. Distribution of different fibre types in human skeletal muscles 2. A study of cross‐sections of whole m. vastus lateralis;Lexell;Acta Physiol. Scand.,1983

3. Histochemical and morphometric characteristics of the normal human vastus medialis longus and vastus medialis obliquus muscles;Travnik;J. Anat.,1995

4. Macro EMG, a new recording technique;Stålberg;J. Neurol. Neurosurg. Psychiatry,1980

5. Superficial motor units are larger than deeper motor units in human vastus lateralis muscle;Knight;Muscle Nerve,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3