Automated pipeline for EEG artifact reduction (APPEAR) recorded during fMRI

Author:

Mayeli AhmadORCID,Al Zoubi Obada,Henry Kaylee,Wong Chung Ki,White Evan J,Luo Qingfei,Zotev Vadim,Refai Hazem,Bodurka JerzyORCID

Abstract

Abstract Objective. Simultaneous electroencephalography-functional magnetic resonance imaging (EEG-fMRI) recordings offer a high spatiotemporal resolution approach to study human brain and understand the underlying mechanisms mediating cognitive and behavioral processes. However, the high susceptibility of EEG to MRI-induced artifacts hinders a broad adaptation of this approach. More specifically, EEG data collected during fMRI acquisition are contaminated with MRI gradients and ballistocardiogram artifacts, in addition to artifacts of physiological origin. There have been several attempts for reducing these artifacts with manual and time-consuming pre-processing, which may result in biasing EEG data due to variations in selecting steps order, parameters, and classification of artifactual independent components. Thus, there is a strong urge to develop a fully automatic and comprehensive pipeline for reducing all major EEG artifacts. In this work, we introduced an open-access toolbox with a fully automatic pipeline for reducing artifacts from EEG data collected simultaneously with fMRI (refer to APPEAR). Approach. The pipeline integrates average template subtraction and independent component analysis to suppress both MRI-related and physiological artifacts. To validate our results, we tested APPEAR on EEG data recorded from healthy control subjects during resting-state (n= 48) and task-based (i.e. event-related-potentials (ERPs); n= 8) paradigms. The chosen gold standard is an expert manual review of the EEG database. Main results. We compared manually and automated corrected EEG data during resting-state using frequency analysis and continuous wavelet transformation and found no significant differences between the two corrections. A comparison between ERP data recorded during a so-called stop-signal task (e.g. amplitude measures and signal-to-noise ratio) also showed no differences between the manually and fully automatic fMRI-EEG-corrected data. Significance. APPEAR offers the first comprehensive open-source toolbox that can speed up advancement of EEG analysis and enhance replication by avoiding experimenters’ preferences while allowing for processing large EEG-fMRI cohorts composed of hundreds of subjects with manageable researcher time and effort.

Funder

Congressionally Directed Medical Research Programs

National Institute of General Medical Sciences

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3