Flexible coding scheme for robotic arm control driven by motor imagery decoding

Author:

Ai Qingsong,Zhao Mengyuan,Chen KunORCID,Zhao Xuefei,Ma LiORCID,Liu Quan

Abstract

Abstract Objective. Brain computer interface (BCI) technology is an innovative way of information exchange, which can effectively convert physiological signals into control instructions of machines. Due to its spontaneity and device independence, the motor imagery (MI) electroencephalography (EEG) signal is used as a common BCI signal source to achieve direct control of external devices. Several online MI EEG-based systems have shown potential for rehabilitation. However, the generalization ability of the current classification model of MI tasks is still limited and the real-time prototype is far from widespread in practice. Approach. To solve these problems, this paper proposes an optimized neural network architecture based on our previous work. Firstly, the artifact components in the MI-EEG signal are removed by using the threshold and threshold function related to the artifact removal evaluation index, and then the data is augmented by the empirical mode decomposition (EMD) algorithm. Furthermore, the ensemble learning (EL) method and fine-tuning strategy in transfer learning (TL) are used to optimize the classification model. Finally, combined with the flexible binary encoding strategy, the EEG signal recognition results are mapped to the control commands of the robotic arm, which realizes multiple degrees of freedom control of the robotic arm. Main results. The results show that EMD has an obvious data amount enhancement effect on a small dataset, and the EL and TL can improve intra-subject and inter-subject model evaluation performance, respectively. The use of a binary coding method realizes the expansion of control instructions, i.e. four kinds of MI-EEG signals are used to complete the control of 7 degrees of freedom of the robotic arm. Significance. Our work not only improves the classification accuracy of the subject and the generality of the classification model while also extending the BCI control instruction set.

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3