Marked point process representation of oscillatory dynamics underlying working memory

Author:

Akella ShailajaORCID,Mohebi Ali,Principe Jose C,Oweiss Karim

Abstract

Abstract Objective. Computational models of neural activity at the meso-scale suggest the involvement of discrete oscillatory bursts as constructs of cognitive processing during behavioral tasks. Classical signal processing techniques that attempt to infer neural correlates of behavior from meso-scale activity employ spectral representations of the signal, exploiting power spectral density techniques and time–frequency (T–F) energy distributions to capture band power features. However, such analyses demand more specialized methods that incorporate explicitly the concepts of neurophysiological signal generation and time resolution in the tens of milliseconds. This paper focuses on working memory (WM), a complex cognitive process involved in encoding, storing and retrieving sensory information, which has been shown to be characterized by oscillatory bursts in the beta and gamma band. Employing a generative model for oscillatory dynamics, we present a marked point process (MPP) representation of bursts during memory creation and readout. We show that the markers of the point process quantify specific neural correlates of WM. Approach. We demonstrate our results on field potentials recorded from the prelimbic and secondary motor cortices of three rats while performing a WM task. The generative model for single channel, band-passed traces of field potentials characterizes with high-resolution, the timings and amplitudes of transient neuromodulations in the high gamma (80–150 Hz, γ) and beta (10–30 Hz, β) bands as an MPP. We use standard hypothesis testing methods on the MPP features to check for significance in encoding of task variables, sensory stimulus and executive control while comparing encoding capabilities of our model with other T–F methods. Main Results. Firstly, the advantages of an MPP approach in deciphering encoding mechanisms at the meso-scale is demonstrated. Secondly, the nature of state encoding by neuromodulatory events is determined. Third, we demonstrate the necessity of a higher time resolution alternative to conventionally employed T–F methods. Finally, our results underscore the novelty in interpreting oscillatory dynamics encompassed by the marked features of the point process. Significance. An MPP representation of meso-scale activity not just enables a rich, high-resolution parameter space for analysis but also presents a novel tool for diverse neural applications.

Funder

National Science Foundation

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Reference87 articles.

1. Correntropy based robust decomposition of neuromodulations;Akella,2019

2. Methods of EEG signal features extraction using linear analysis in frequency and time-frequency domains;Al-Fahoum;ISRN Neurosci.,2014

3. Spatial working memory in humans depends on theta and high gamma synchronization in the prefrontal cortex;Alekseichuk;Curr. Biol.,2016

4. Human memory: a proposed system and its control processes;Atkinson,1968

5. Working memory;Baddeley,1974

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Beta: bursts of cognition;Trends in Cognitive Sciences;2024-07

2. State-sensitive convolutional sparse coding for potential biomarker identification in brain signals;Science China Information Sciences;2024-04-08

3. Decoding Ensemble Spike States from Extracellular Field Potentials;2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC);2023-07-24

4. Measurable fields-to-spike causality and its dependence on cortical layer and area;2023-01-20

5. Extracting synchronized neuronal activity from local field potentials based on a marked point process framework;Journal of Neural Engineering;2022-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3