From lab to life: assessing the impact of real-world interactions on the operation of rapid serial visual presentation-based brain-computer interfaces

Author:

Ahsan Awais MuhammadORCID,Ward TomasORCID,Redmond PeterORCID,Healy GrahamORCID

Abstract

Abstract Objective. Brain-computer interfaces (BCI) have been extensively researched in controlled lab settings where the P300 event-related potential (ERP), elicited in the rapid serial visual presentation (RSVP) paradigm, has shown promising potential. However, deploying BCIs outside of laboratory settings is challenging due to the presence of contaminating artifacts that often occur as a result of activities such as talking, head movements, and body movements. These artifacts can severely contaminate the measured EEG signals and consequently impede detection of the P300 ERP. Our goal is to assess the impact of these real-world noise factors on the performance of a RSVP-BCI, specifically focusing on single-trial P300 detection. Approach. In this study, we examine the impact of movement activity on the performance of a P300-based RSVP-BCI application designed to allow users to search images at high speed. Using machine learning, we assessed P300 detection performance using both EEG data captured in optimal recording conditions (e.g. where participants were instructed to refrain from moving) and a variety of conditions where the participant intentionally produced movements to contaminate the EEG recording. Main results. The results, presented as area under the receiver operating characteristic curve (ROC-AUC) scores, provide insight into the significant impact of noise on single-trial P300 detection. Notably, there is a reduction in classifier detection accuracy when intentionally contaminated RSVP trials are used for training and testing, when compared to using non-intentionally contaminated RSVP trials. Significance. Our findings underscore the necessity of addressing and mitigating noise in EEG recordings to facilitate the use of BCIs in real-world settings, thus extending the reach of EEG technology beyond the confines of the laboratory.

Funder

CHIST-ERA

Science Foundation Ireland

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3