Optimally-calibrated non-invasive feedback improves amputees’ metabolic consumption, balance and walking confidence

Author:

Chee LaurenORCID,Valle GiacomoORCID,Marazzi MicheleORCID,Preatoni GretaORCID,Haufe Florian LORCID,Xiloyannis MicheleORCID,Riener RobertORCID,Raspopovic StanisaORCID

Abstract

Abstract Objective. Lower-limb amputees suffer from a variety of health problems, including higher metabolic consumption and low mobility. These conditions are linked to the lack of a natural sensory feedback (SF) from their prosthetic device, which forces them to adopt compensatory walking strategies that increase fatigue. Recently, both invasive (i.e. requiring a surgery) and non-invasive approaches have been able to provide artificial sensations via neurostimulation, inducing multiple functional and cognitive benefits. Implants helped to improve patient mobility and significantly reduce their metabolic consumption. A wearable, non-invasive alterative that provides similar useful health benefits, would eliminate the surgery related risks and costs thereby increasing the accessibility and the spreading of such neurotechnologies. Approach. Here, we present a non-invasive SF system exploiting an optimally-calibrated (just noticeable difference-based) electro-cutaneous stimulation to encode intensity-modulated foot-ground and knee angle information personalized to the user’s just noticeable perceptual threshold. This device was holistically evaluated in three transfemoral amputees by examination of metabolic consumption while walking outdoors, walking over different inclinations on a treadmill indoors, and balance maintenance in reaction to unexpected perturbation on a treadmill indoors. We then collected spatio-temporal parameters (i.e. gait dynamic and kinematics), and self-reported prosthesis confidence while the patients were walking with and without the SF. Main results. This non-invasive SF system, encoding different distinctly perceived levels of tactile and knee flexion information, successfully enabled subjects to decrease metabolic consumption while walking and increase prosthesis confidence. Remarkably, more physiological walking strategies and increased stability in response to external perturbations were observed while walking with the SF. Significance. The health benefits observed with the use of this non-invasive device, previously only observed exploiting invasive technologies, takes an important step towards the development of a practical, non-invasive alternative to restoring SF in leg amputees.

Funder

Innosuisse - Schweizerische Agentur für Innovationsförderung

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

H2020 European Research Council

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3