Eliciting calcium transients with UV nanosecond laser stimulation in adult patient-derived glioblastoma brain cancer cells in vitro

Author:

Mellor Nicholas GORCID,Chung Sylvia A,Graham E Scott,Day Bryan W,Unsworth Charles P

Abstract

Abstract Objective. Glioblastoma (GBM) is the most common and lethal type of high-grade adult brain cancer. The World Health Organization have classed GBM as an incurable disease because standard treatments have yielded little improvement with life-expectancy being 6–15 months after diagnosis. Different approaches are now crucial to discover new knowledge about GBM communication/function in order to establish alternative therapies for such an aggressive adult brain cancer. Calcium (Ca2+) is a fundamental cell molecular messenger employed in GBM being involved in a wide dynamic range of cellular processes. Understanding how the movement of Ca2+ behaves and modulates activity in GBM at the single-cell level is relatively unexplored but holds the potential to yield opportunities for new therapeutic strategies and approaches for cancer treatment. Approach. In this article we establish a spatially and temporally precise method for stimulating Ca2+ transients in three patient-derived GBM cell-lines (FPW1, RN1, and RKI1) such that Ca2+ communication can be studied from single-cell to larger network scales. We demonstrate that this is possible by administering a single optimized ultra-violet (UV) nanosecond laser pulse to trigger GBM Ca2+ transients. Main results. We determine that 1.58 µJ µm−2 is the optimal UV nanosecond laser pulse energy density necessary to elicit a single Ca2+ transient in the GBM cell-lines whilst maintaining viability, functionality, the ability to be stimulated many times in an experiment, and to trigger further Ca2+ communication in a larger network of GBM cells. Significance. Using adult patient-derived mesenchymal GBM brain cancer cell-lines, the most aggressive form of GBM cancer, this work is the first of its kind as it provides a new effective modality of which to stimulate GBM cells at the single-cell level in an accurate, repeatable, and reliable manner; and is a first step toward Ca2+ communication in GBM brain cancer cells and their networks being more effectively studied.

Funder

Royal Society Te Apārangi

The University of Auckland Doctoral Scholarship

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3