A spiking neural network with continuous local learning for robust online brain machine interface

Author:

Taeckens Elijah AORCID,Shah SahilORCID

Abstract

Abstract Objective. Spiking neural networks (SNNs) are powerful tools that are well suited for brain machine interfaces (BMI) due to their similarity to biological neural systems and computational efficiency. They have shown comparable accuracy to state-of-the-art methods, but current training methods require large amounts of memory, and they cannot be trained on a continuous input stream without pausing periodically to perform backpropagation. An ideal BMI should be capable training continuously without interruption to minimize disruption to the user and adapt to changing neural environments. Approach. We propose a continuous SNN weight update algorithm that can be trained to perform regression learning with no need for storing past spiking events in memory. As a result, the amount of memory needed for training is constant regardless of the input duration. We evaluate the accuracy of the network on recordings of neural data taken from the premotor cortex of a primate performing reaching tasks. Additionally, we evaluate the SNN in a simulated closed loop environment and observe its ability to adapt to sudden changes in the input neural structure. Main results. The continuous learning SNN achieves the same peak correlation ( ρ = 0.7 ) as existing SNN training methods when trained offline on real neural data while reducing the total memory usage by 92%. Additionally, it matches state-of-the-art accuracy in a closed loop environment, demonstrates adaptability when subjected to multiple types of neural input disruptions, and is capable of being trained online without any prior offline training. Significance. This work presents a neural decoding algorithm that can be trained rapidly in a closed loop setting. The algorithm increases the speed of acclimating a new user to the system and also can adapt to sudden changes in neural behavior with minimal disruption to the user.

Funder

Division of Electrical, Communications and Cyber Systems

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3