Improving EEG-based decoding of the locus of auditory attention through domain adaptation *

Author:

Wilroth JohannaORCID,Bernhardsson BoORCID,Heskebeck FridaORCID,Skoglund Martin AORCID,Bergeling CarolinaORCID,Alickovic EminaORCID

Abstract

Abstract Objective. This paper presents a novel domain adaptation (DA) framework to enhance the accuracy of electroencephalography (EEG)-based auditory attention classification, specifically for classifying the direction (left or right) of attended speech. The framework aims to improve the performances for subjects with initially low classification accuracy, overcoming challenges posed by instrumental and human factors. Limited dataset size, variations in EEG data quality due to factors such as noise, electrode misplacement or subjects, and the need for generalization across different trials, conditions and subjects necessitate the use of DA methods. By leveraging DA methods, the framework can learn from one EEG dataset and adapt to another, potentially resulting in more reliable and robust classification models. Approach. This paper focuses on investigating a DA method, based on parallel transport, for addressing the auditory attention classification problem. The EEG data utilized in this study originates from an experiment where subjects were instructed to selectively attend to one of the two spatially separated voices presented simultaneously. Main results. Significant improvement in classification accuracy was observed when poor data from one subject was transported to the domain of good data from different subjects, as compared to the baseline. The mean classification accuracy for subjects with poor data increased from 45.84% to 67.92%. Specifically, the highest achieved classification accuracy from one subject reached 83.33%, a substantial increase from the baseline accuracy of 43.33%. Significance. The findings of our study demonstrate the improved classification performances achieved through the implementation of DA methods. This brings us a step closer to leveraging EEG in neuro-steered hearing devices.

Funder

ELLIIT Strategic Research Area

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3