Abstract
Abstract
Objective. Neonatal electroencephalography (EEG) source localization is highly prone to errors due to head modeling deficiencies. In this study, we investigated the effect of head model complexities on the accuracy of EEG source localization in full term neonates using a realistic volume conductor head model. Approach. We performed numerical simulations to investigate source localization errors caused by cerebrospinal fluid (CSF) and fontanel exclusion and gray matter (GM)/white matter (WM) distinction using the finite element method. Main results. Our results showed that the exclusion of CSF from the head model could cause significant localization errors mostly for sources closer to the inner surface of the skull. With a less pronounced effect compared to the CSF exclusion, the discrimination between GM and WM also widely affected all sources, especially those located in deeper structures. The exclusion of the fontanels from the head model led to source localization errors for sources located in areas beneath the fontanels. Our finding clearly shows that the CSF inclusion and GM/WM distinction in EEG inverse modeling can substantially reduce EEG source localization errors. Moreover, fontanels should be included in neonatal head models, particularly in source localization applications, in which sources of interest are located beneath or in vicinity of fontanels. Significance. Our findings have practical implications for a better understanding of the impact of head model complexities on the accuracy of EEG source localization in neonates.
Subject
Cellular and Molecular Neuroscience,Biomedical Engineering
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献