Transferable multi-modal fusion in knee angles and gait phases for their continuous prediction

Author:

Guo ZhenpengORCID,Zheng Huixian,Wu HanruiORCID,Zhang Jia,Zhou Guoxu,Long JinyiORCID

Abstract

Abstract Objective. The gait phase and joint angle are two essential and complementary components of kinematics during normal walking, whose accurate prediction is critical for lower-limb rehabilitation, such as controlling the exoskeleton robots. Multi-modal signals have been used to promote the prediction performance of the gait phase or joint angle separately, but it is still few reports to examine how these signals can be used to predict both simultaneously. Approach. To address this problem, we propose a new method named transferable multi-modal fusion (TMMF) to perform a continuous prediction of knee angles and corresponding gait phases by fusing multi-modal signals. Specifically, TMMF consists of a multi-modal signal fusion block, a time series feature extractor, a regressor, and a classifier. The multi-modal signal fusion block leverages the maximum mean discrepancy to reduce the distribution discrepancy across different modals in the latent space, achieving the goal of transferable multi-modal fusion. Subsequently, by using the long short-term memory-based network, we obtain the feature representation from time series data to predict the knee angles and gait phases simultaneously. To validate our proposal, we design an experimental paradigm with random walking and resting to collect data containing multi-modal biomedical signals from electromyography, gyroscopes, and virtual reality. Main results. Comprehensive experiments on our constructed dataset demonstrate the effectiveness of the proposed method. TMMF achieves a root mean square error of 0.090 ± 0.022 s in knee angle prediction and a precision of 83.7 ± 7.7 % in gait phase prediction. Significance. We demonstrate the feasibility and validity of using TMMF to predict lower-limb kinematics continuously from multi-modal biomedical signals. This proposed method represents application potential in predicting the motor intent of patients with different pathologies.

Funder

Guangdong Provincial Natural Science Foundation of China

Outstanding Youth Project of Guangdong Natural Science Foundation of China

China Postdoctoral Science Foundation

Science and Technology Project in Guangzhou

Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization

National Natural Science Foundation of China

Fundamental Research Funds for Central Universities

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3