PVGAN: a generative adversarial network for object simplification in prosthetic vision

Author:

Elnabawy Reham H,Abdennadher Slim,Hellwich Olaf,Eldawlatly SeifORCID

Abstract

Abstract Objective. By means of electrical stimulation of the visual system, visual prostheses provide promising solution for blind patients through partial restoration of their vision. Despite the great success achieved so far in this field, the limited resolution of the perceived vision using these devices hinders the ability of visual prostheses users to correctly recognize viewed objects. Accordingly, we propose a deep learning approach based on generative adversarial networks (GANs), termed prosthetic vision GAN (PVGAN), to enhance object recognition for the implanted patients by representing objects in the field of view based on a corresponding simplified clip art version. Approach. To assess the performance, an axon map model was used to simulate prosthetic vision in experiments involving normally-sighted participants. In these experiments, four types of image representation were examined. The first and second types comprised presenting phosphene simulation of real images containing the actual high-resolution object, and presenting phosphene simulation of the real image followed by the clip art image, respectively. The other two types were utilized to evaluate the performance in the case of electrode dropout, where the third type comprised presenting phosphene simulation of only clip art images without electrode dropout, while the fourth type involved clip art images with electrode dropout. Main results. The performance was measured through three evaluation metrics which are the accuracy of the participants in recognizing the objects, the time taken by the participants to correctly recognize the object, and the confidence level of the participants in the recognition process. Results demonstrate that representing the objects using clip art images generated by the PVGAN model results in a significant enhancement in the speed and confidence of the subjects in recognizing the objects. Significance. These results demonstrate the utility of using GANs in enhancing the quality of images perceived using prosthetic vision.

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Reference72 articles.

1. Visual prostheses;Weiland;Proc. IEEE,2008

2. Retinitis pigmentosa;O’Neal,2021

3. Age-related macular degeneration: a two-level model hypothesis;Rozing;Prog. Retin. Eye Res.,2020

4. Implantation of electronic visual prosthesis for blindness restoration;Jang;Opt. Mater. Express,2019

5. One-year safety and performance assessment of the Argus II retinal prosthesis: a postapproval study;Schaffrath;JAMA Ophthalmol.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3