Towards a mesoscale physical modeling framework for stereotactic-EEG recordings

Author:

Mercadal BorjaORCID,Lopez-Sola EdmundoORCID,Galan-Gadea AdriàORCID,Al Harrach MariamORCID,Sanchez-Todo RoserORCID,Salvador RicardoORCID,Bartolomei FabriceORCID,Wendling FabriceORCID,Ruffini GiulioORCID

Abstract

Abstract Objective. Stereotactic-electroencephalography (SEEG) and scalp EEG recordings can be modeled using mesoscale neural mass population models (NMMs). However, the relationship between those mathematical models and the physics of the measurements is unclear. In addition, it is challenging to represent SEEG data by combining NMMs and volume conductor models due to the intermediate spatial scale represented by these measurements. Approach. We provide a framework combining the multi-compartmental modeling formalism and a detailed geometrical model to simulate the transmembrane currents that appear in layer 3, 5 and 6 pyramidal cells due to a synaptic input. With this approach, it is possible to realistically simulate the current source density (CSD) depth profile inside a cortical patch due to inputs localized into a single cortical layer and the induced voltage measured by two SEEG contacts using a volume conductor model. Based on this approach, we built a framework to connect the activity of a NMM with a volume conductor model and we simulated an example of SEEG signal as a proof of concept. Main results. CSD depends strongly on the distribution of the synaptic inputs onto the different cortical layers and the equivalent current dipole strengths display substantial differences (of up to a factor of four in magnitude in our example). Thus, the inputs coming from different neural populations do not contribute equally to the electrophysiological recordings. A direct consequence of this is that the raw output of NMMs is not a good proxy for electrical recordings. We also show that the simplest CSD model that can accurately reproduce SEEG measurements can be constructed from discrete monopolar sources (one per cortical layer). Significance. Our results highlight the importance of including a physical model in NMMs to represent measurements. We provide a framework connecting microscale neuron models with the neural mass formalism and with physical models of the measurement process that can improve the accuracy of predicted electrophysiological recordings.

Funder

H2020 European Research Council

H2020 Future and Emerging Technologies

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3