An investigation of in-ear sensing for motor task classification

Author:

Wu XiaoliORCID,Zhang WenhuiORCID,Fu ZhiboORCID,Cheung Roy T HORCID,Chan Rosa H MORCID

Abstract

Abstract Objective. Our study aims to investigate the feasibility of in-ear sensing for human–computer interface. Approach. We first measured the agreement between in-ear biopotential and scalp-electroencephalogram (EEG) signals by channel correlation and power spectral density analysis. Then we applied EEG compact network (EEGNet) for the classification of a two-class motor task using in-ear electrophysiological signals. Main results. The best performance using in-ear biopotential with global reference reached an average accuracy of 70.22% (cf 92.61% accuracy using scalp-EEG signals), but the performance in-ear biopotential with near-ear reference was poor. Significance. Our results suggest in-ear sensing would be a viable human–computer interface for movement prediction, but careful consideration should be given to the position of the reference electrode.

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Reference24 articles.

1. The neurophysiological bases of EEG and EEG measurement: a review for the rest of us;Jackson;Psychophysiology,2014

2. Fundamentals of EEG measurement;Teplan;Meas. Sci. Rev.,2002

3. Electroencephalogram;Nunez;Scholarpedia,2007

4. The in-the-ear recording concept: user-centered and wearable brain monitoring;Looney;IEEE Pulse,2012

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. TSPNet: a time-spatial parallel network for classification of EEG-based multiclass upper limb motor imagery BCI;Frontiers in Neuroscience;2023-12-15

2. The future of wearable EEG: a review of ear-EEG technology and its applications;Journal of Neural Engineering;2023-10-01

3. Reduction of the ERP Measurement Time by a Weighted Averaging Using Deep Learning;2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC);2021-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3