Feature selection method based on Menger curvature and LDA theory for a P300 brain–computer interface

Author:

Li ShuruiORCID,Jin JingORCID,Daly IanORCID,Liu ChangORCID,Cichocki AndrzejORCID

Abstract

Abstract Objective. Brain–computer interface (BCI) systems decode electroencephalogram (EEG) signals to establish a channel for direct interaction between the human brain and the external world without the need for muscle or nerve control. The P300 speller, one of the most widely used BCI applications, presents a selection of characters to the user and performs character recognition by identifying P300 event-related potentials from the EEG. Such P300-based BCI systems can reach good levels of accuracy but are difficult to use in day-to-day life due to redundancy and noisy signal. A room for improvement should be considered. We propose a novel hybrid feature selection method for the P300-based BCI system to address the problem of feature redundancy, which combines the Menger curvature and linear discriminant analysis. Approach. First, selected strategies are applied separately to a given dataset to estimate the gain for application to each feature. Then, each generated value set is ranked in descending order and judged by a predefined criterion to be suitable in classification models. The intersection of the two approaches is then evaluated to identify an optimal feature subset. Main results. The proposed method is evaluated using three public datasets, i.e. BCI Competition III dataset II, brain/neural computer interaction Horizon dataset, and Lausanne Federal Institute of Technology dataset. Experimental results indicate that compared with other typical feature selection and classification methods, our proposed method has better or comparable performance. Significance. Additionally, our proposed method can achieve the best classification accuracy after all epochs in three datasets. In summary, our proposed method provides a new way to enhance the performance of the P300-based BCI speller.

Funder

National key research and development program

the programme of Introducing Talents of Discipline to Universities

Grant National Natural Science Foundation of China

Ministry of Education and Science of the Russian Federation

"ShuGuang" project

Polish National Science Center

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3