EMvelop stimulation: minimally invasive deep brain stimulation using temporally interfering electromagnetic waves

Author:

Ahsan FatimaORCID,Chi Taiyun,Cho Raymond,Sheth Sameer A,Goodman Wayne,Aazhang Behnaam

Abstract

Abstract Objective. Recently, the temporal interference stimulation (TIS) technique for focal noninvasive deep brain stimulation (DBS) was reported. However, subsequent computational modeling studies on the human brain have shown that while TIS achieves higher focality of electric fields than state-of-the-art methods, further work is needed to improve the stimulation strength. Here, we investigate the idea of EMvelop stimulation, a minimally invasive DBS setup using temporally interfering gigahertz (GHz) electromagnetic (EM) waves. At GHz frequencies, we can create antenna arrays at the scale of a few centimeters or less that can be endocranially implanted to enable longitudinal stimulation and circumvent signal attenuation due to the scalp and skull. Furthermore, owing to the small wavelength of GHz EM waves, we can optimize both amplitudes and phases of the EM waves to achieve high intensity and focal stimulation at targeted regions within the safety limit for exposure to EM waves. Approach. We develop a simulation framework investigating the propagation of GHz EM waves generated by line current antenna elements and the corresponding heat generated in the brain tissue. We propose two optimization flows to identify antenna current amplitudes and phases for either maximal intensity or maximal focality transmission of the interfering electric fields with EM waves safety constraint. Main results. A representative result of our study is that with two endocranially implanted arrays of size 4.2  cm × 4.7  cm each, we can achieve an intensity of 12 V m−1 with a focality of 3.6  cm at a target deep in the brain tissue. Significance. In this proof-of-principle study, we show that the idea of EMvelop stimulation merits further investigation as it can be a minimally invasive way of stimulating deep brain targets and offers benefits not shared by prior methodologies of electrical or magnetic stimulation.

Funder

Robert and Janice McNair Foundation

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3