HArtMuT—modeling eye and muscle contributors in neuroelectric imaging

Author:

Harmening NilsORCID,Klug MariusORCID,Gramann KlausORCID,Miklody DanielORCID

Abstract

Abstract Objective. Magneto- and electroencephalography (M/EEG) measurements record a mix of signals from the brain, eyes, and muscles. These signals can be disentangled for artifact cleaning e.g. using spatial filtering techniques. However, correctly localizing and identifying these components relies on head models that so far only take brain sources into account. Approach. We thus developed the Head Artifact Model using Tripoles (HArtMuT). This volume conduction head model extends to the neck and includes brain sources as well as sources representing eyes and muscles that can be modeled as single dipoles, symmetrical dipoles, and tripoles. We compared a HArtMuT four-layer boundary element model (BEM) with the EEGLAB standard head model on their localization accuracy and residual variance (RV) using a HArtMuT finite element model (FEM) as ground truth. We also evaluated the RV on real-world data of mobile participants, comparing different HArtMuT BEM types with the EEGLAB standard head model. Main results. We found that HArtMuT improves localization for all sources, especially non-brain, and localization error and RV of non-brain sources were in the same range as those of brain sources. The best results were achieved by using cortical dipoles, muscular tripoles, and ocular symmetric dipoles, but dipolar sources alone can already lead to convincing results. Significance. We conclude that HArtMuT is well suited for modeling eye and muscle contributions to the M/EEG signal. It can be used to localize sources and to identify brain, eye, and muscle components. HArtMuT is freely available and can be integrated into standard software.

Funder

Deutsche Forschungsgemeinschaft

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Reference55 articles.

1. Dipole models of eye movements and blinks;Berg;Electroencephalogr. Clin. Neurophysiol.,1991

2. Single-trial analysis and classification of ERP components—a tutorial;Blankertz;NeuroImage,2011

3. On modeling the single motor unit action potential;Boyd;IEEE Trans. Biomed. Eng.,1978

4. The origin of extracellular fields and currents—EEG, ECoG, LFP and spikes;Buzsáki;Nat. Rev. Neurosci.,2012

5. In vivo conductivity estimation with symmetric boundary elements;Clerc;Int. J. Bioelectromagn.,2005

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3