Abstract
Abstract
Objective. Non-human primates (NHPs) are critical for development of translational neural technologies because of their neurological and neuroanatomical similarities to humans. Large-scale neural interfaces in NHPs with multiple modalities for stimulation and data collection poise us to unveil network-scale dynamics of both healthy and unhealthy neural systems. We aim to develop a large-scale multi-modal interface for NHPs for the purpose of studying large-scale neural phenomena including neural disease, damage, and recovery. Approach. We present a multi-modal artificial dura (MMAD) composed of flexible conductive traces printed into transparent medical grade polymer. Our MMAD provides simultaneous neurophysiological recordings and optical access to large areas of the cortex (∼3 cm2) and is designed to mitigate photo-induced electrical artifacts. The MMAD is the centerpiece of the interfaces we have designed to support electrocorticographic recording and stimulation, cortical imaging, and optogenetic experiments, all at the large-scales afforded by the brains of NHPs. We performed electrical and optical experiments bench-side and in vivo with macaques to validate the utility of our MMAD. Main results. Using our MMAD we present large-scale electrocorticography from sensorimotor cortex of three macaques. Furthermore, we validated surface electrical stimulation in one of our animals. Our bench-side testing showed up to 90% reduction of photo-induced artifacts with our MMAD. The transparency of our MMAD was confirmed both via bench-side testing (87% transmittance) and via in vivo imaging of blood flow from the underlying microvasculature using optical coherence tomography angiography. Significance. Our results indicate that our MMAD supports large-scale electrocorticography, large-scale cortical imaging, and, by extension, large-scale optical stimulation. The MMAD prepares the way for both acute and long-term chronic experiments with complimentary data collection and stimulation modalities. When paired with the complex behaviors and cognitive abilities of NHPs, these assets prepare us to study large-scale neural phenomena including neural disease, damage, and recovery.
Funder
National Science Foundation Graduate Research Fellowship
Washington National Primate Research Center
University of Washington Royalty Research Fund
Eunice Kennedy Shriver National Institute of Child Health and Human Development
Weill Neurohub
Center for Neurotechnology
Subject
Cellular and Molecular Neuroscience,Biomedical Engineering
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献