Abstract
Abstract
Objective: recently, pupil oscillations synchronized with steady visual stimuli were used as input for an interface. The proposed system, inspired by a brain-computer interface based on steady-state visual evoked potentials, does not require contact with the participant. However, the pupil oscillation mechanism limits the stimulus frequency to 2.5 Hz or less, making it hard to enhance the information transfer rate (ITR). Approach: here, we compared multiple conditions for stimulation to increase the ITR of the pupil vibration-based interface, which were called monocular-single, monocular-superposed, and binocular-independent conditions. The binocular-independent condition stimulates each eye at different frequencies respectively and mixes them by using the visual stereoscopic perception of users. The monocular-superposed condition stimulates both eyes by a mixed signal of two different frequencies. We selected the shape of the stimulation signal, evaluated the amount of spectral leakage in the monocular-superposed and binocular-independent conditions, and compared the power spectrum density at the stimulation frequency. Moreover, 5, 10, and 15 patterns of stimuli were classified in each condition. Main results: a square wave, which causes an efficient pupil response, was used as the stimulus. Spectral leakage at the beat frequency was higher in the monocular-superposed condition than in the binocular-independent one. The power spectral density of stimulus frequencies was greatest in the monocular-single condition. Finally, we could classify the 15-stimulus pattern, with ITRs of 14.4 (binocular-independent, using five frequencies), 14.5 (monocular-superimposed, using five frequencies), and 23.7 bits min−1 (monocular-single, using 15 frequencies). There were no significant differences for the binocular-independent and monocular-superposed conditions. Significance: this paper shows a way to increase the number of stimuli that can be simultaneously displayed without decreasing ITR, even when only a small number of frequencies are available. This could lead to the provision of an interface based on pupil oscillation to a wider range of users.
Funder
Mazda Foundation
Japan Society for the Promotion of Science
Subject
Cellular and Molecular Neuroscience,Biomedical Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献