Deriving causal relationships in resting-state functional connectivity using SSFO-based optogenetic fMRI

Author:

Han XuORCID,Cramer Samuel R,Zhang NanyinORCID

Abstract

Abstract Objective. The brain network has been extensively studied as a collection of brain regions that are functionally inter-connected. However, the study of the causal relationship in brain-wide functional connectivity, which is critical to the brain function, remains challenging. We aim to examine the feasibility of using (SSFO)-based optogenetic functional magnetic resonance imaging to infer the causal relationship (i.e. directional information) in the brain network. Approach. We combined SSFO-based optogenetics with fMRI in a resting-state rodent model to study how a local increase of excitability affects brain-wide neural activity and resting-state functional connectivity (RSFC). We incorporated Pearson’s correlation and partial correlation analyses in a graphic model to derive the directional information in connections exhibiting RSFC modulations. Main results. When the dentate gyrus (DG) was sensitized by SSFO activation, we found significantly changed activity and connectivity in several brain regions associated with the DG, particularly in the medial prefrontal cortex Our causal inference result shows an 84%–100% accuracy rate compared to the directional information based on anatomical tracing data. Significance. This study establishes a system to investigate the relationship between local region activity and RSFC modulation, and provides a way to analyze the underlying causal relationship between brain regions.

Funder

National Institute of General Medical Sciences

National Institute of Neurological Disorders and Stroke

National Institute of Mental Health

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Reference53 articles.

1. Exploring the brain network: a review on resting-state FMRI functional connectivity;van den Heuvel;Eur. Neuropsychopharmacol.,2010

2. Analyzing effective connectivity with FMRI;Stephan;Wiley Interdiscip. Rev. Cogn. Sci.,2010

3. Bayesian networks for FMRI: a primer;Mumford;Neuroimage,2014

4. Six problems for causal inference from FMRI;Ramsey;Neuroimage,2010

5. Functional and effective connectivity: a review;Friston;Brain Connect.,2011

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3