Improving pre-movement pattern detection with filter bank selection

Author:

Jia HaoORCID,Sun ZheORCID,Duan FengORCID,Zhang YuORCID,Caiafa Cesar FORCID,Solé-Casals JordiORCID

Abstract

Abstract Objective. Pre-movement decoding plays an important role in detecting the onsets of actions using low-frequency electroencephalography (EEG) signals before the movement of an upper limb. In this work, a binary classification method is proposed between two different states. Approach. The proposed method, referred to as filter bank standard task-related component analysis (FBTRCA), is to incorporate filter bank selection into the standard task-related component analysis (STRCA) method. In FBTRCA, the EEG signals are first divided into multiple sub-bands which start at specific fixed frequencies and end frequencies that follow in an arithmetic sequence. The STRCA method is then applied to the EEG signals in these bands to extract CCPs. The minimum redundancy maximum relevance feature selection method is used to select essential features from these correlation patterns in all sub-bands. Finally, the selected features are classified using the binary support vector machine classifier. A convolutional neural network (CNN) is an alternative approach to select canonical correlation patterns. Main Results. Three methods were evaluated using EEG signals in the time window from 2 s before the movement onset to 1 s after the movement onset. In the binary classification between a movement state and the resting state, the FBTRCA achieved an average accuracy of 0.8968 ± 0.0847 while the accuracies of STRCA and CNN were 0.8228 ± 0.1149 and 0.8828 ± 0.0917, respectively. In the binary classification between two actions, the accuracies of STRCA, CNN, and FBTRCA were 0.6611 ± 0.1432, 0.6993 ± 0.1271, 0.7178 ± 0.1274, respectively. Feature selection using filter banks, as in FBTRCA, produces comparable results to STRCA. Significance. The proposed method provides a way to select filter banks in pre-movement decoding, and thus it improves the classification performance. The improved pre-movement decoding of single upper limb movements is expected to provide people with severe motor disabilities with a more natural, non-invasive control of their external devices.

Funder

PICT

European Cooperation in Science and Technology

doctoral programme in Experimental Science and Technology at the University of Vic - Central University of Catalonia

UBACYT

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3