Online detection of class-imbalanced error-related potentials evoked by motor imagery

Author:

Liu Quan,Zheng Wenhao,Chen KunORCID,Ma LiORCID,Ai Qingsong

Abstract

Abstract Objective. Error-related potentials (ErrPs) are spontaneous electroencephalogram signals related to the awareness of erroneous responses within brain domain. ErrPs-based correction mechanisms can be applied to motor imagery-brain–computer interface (MI-BCI) to prevent incorrect actions and ultimately improve the performance of the hybrid BCI. Many studies on ErrPs detection are mostly conducted under offline conditions with poor classification accuracy and the error rates of ErrPs are preset in advance, which is too ideal to apply in realistic applications. In order to solve these problems, a novel method based on adaptive autoregressive (AAR) model and common spatial pattern (CSP) is proposed for ErrPs feature extraction. In addition, an adaptive threshold classification method based spectral regression discriminant analysis (SRDA) is suggested for class-unbalanced ErrPs data to reduce the false positives and false negatives. Approach. As for ErrPs feature extraction, the AAR coefficients in the temporal domain and CSP in the spatial domain are fused. Given that the performance of different subjects’ MI tasks is different but stable, and the samples of ErrPs are class-imbalanced, an adaptive threshold based SRDA is suggested for classification. Two datasets are used in this paper. The open public clinical neuroprosthetics and brain interaction (CNBI) dataset is used to validate the performance of the proposed feature extraction algorithm and the real-time data recorded in our self-designed system is used to validate the performance of the proposed classification algorithm under class-imbalanced situations. Different from the pseudo-random paradigm, the ErrPs signals collected in our experiments are all elicited by four-class of online MI-BCI tasks, and the sample distribution is more natural and suitable for practical tests. Main results. The experimental results on the CNBI dataset show that the average accuracy and false positive rate for ErrPs detection are 94.1% and 8.1%, which outperforms methods using features extracted from a single domain. What’s more, although the ErrPs induction rate is affected by the performance of subjects’ MI-BCI tasks, experimental results on data recorded in the self-designed system prove that the ErrPs classification algorithm based on an adaptive threshold is robust under different ErrPs data distributions. Compared with two other methods, the proposed algorithm has advantages in all three measures which are accuracy, F1-score and false positive rate. Finally, ErrPs detection results were used to prevent wrong actions in a MI-BCI experiment, and it leads to a reduction of the hybrid BCI error rate from 48.9% to 24.3% in online tests. Significance. Both the AAR-CSP fused feature extraction and the adaptive threshold based SRDA classification methods suggested in our work are efficient in improving the ErrPs detection accuracy and reducing the false positives. In addition, by introducing ErrPs to multi-class MI-BCIs, the MI decoding results can be corrected after ErrPs are detected to avoid executing wrong instructions, thereby improving the BCI accuracy and lays the foundation for using MI-BCIs in practical applications.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Reference33 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3