Estimation of seizure onset zone from ictal scalp EEG using independent component analysis in extratemporal lobe epilepsy

Author:

de Borman AurélieORCID,Vespa SimoneORCID,Tahry Riëm El,Absil P.-A.ORCID

Abstract

Abstract Objective. The purpose of this study is to localize the seizure onset zone of patients suffering from drug-resistant epilepsy. During the last two decades, multiple studies proposed the use of independent component analysis (ICA) to analyze ictal electroencephalogram (EEG) recordings. This study aims at evaluating ICA potential with quantitative measurements. In particular, we address the challenging step where the components extracted by ICA of an ictal nature must be selected. Approach. We considered a cohort of 10 patients suffering from extratemporal lobe epilepsy who were rendered seizure-free after surgery. Different sets of pre-processing parameters were compared and component features were explored to help distinguish ictal components from others. Quantitative measurements were implemented to determine whether some of the components returned by ICA were located within the resection zone and thus likely to be ictal. Finally, an assistance to the component selection was proposed based on the implemented features. Main results. For every seizure, at least one component returned by ICA was localized within the resection zone, with the optimal pre-processing parameters. Three features were found to distinguish components localized within the resection zone: the dispersion of their active brain sources, the ictal rhythm power and the contribution to the EEG variance. Using the implemented component selection assistance based on the features, the probability that the first proposed component yields an accurate estimation reaches 51.43% (without assistance: 24.74%). The accuracy reaches 80% when considering the best result within the first five components. Significance. This study confirms the utility of ICA for ictal EEG analysis in extratemporal lobe epilepsy, and suggests relevant features to analyze the components returned by ICA. A component selection assistance is proposed to guide clinicians in their choice for ictal components.

Funder

Fonds de Recherche Clinique des Cliniques Universitaires Saint Luc

Fonds De La Recherche Scientifique - FNRS

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3