Epileptic seizure detection by using interpretable machine learning models

Author:

Zhao Xuyang,Yoshida Noboru,Ueda Tetsuya,Sugano Hidenori,Tanaka ToshihisaORCID

Abstract

Abstract Objective. Accurate detection of epileptic seizures using electroencephalogram (EEG) data is essential for epilepsy diagnosis, but the visual diagnostic process for clinical experts is a time-consuming task. To improve efficiency, some seizure detection methods have been proposed. Regardless of traditional or machine learning methods, the results identify only seizures and non-seizures. Our goal is not only to detect seizures but also to explain the basis for detection and provide reference information to clinical experts. Approach. In this study, we follow the visual diagnosis mechanism used by clinical experts that directly processes plotted EEG image data and apply some commonly used models of LeNet, VGG, deep residual network (ResNet), and vision transformer (ViT) to the EEG image classification task. Before using these models, we propose a data augmentation method using random channel ordering (RCO), which adjusts the channel order to generate new images. The Gradient-weighted class activation mapping (Grad-CAM) and attention layer methods are used to interpret the models. Main results. The RCO method can balance the dataset in seizure and non-seizure classes. The models achieved good performance in the seizure detection task. Moreover, the Grad-CAM and attention layer methods explained the detection basis of the model very well and calculate a value that measures the seizure degree. Significance. Processing EEG data in the form of images can flexibility to use a variety of machine learning models. The imbalance problem that exists widely in clinical practice is well solved by the RCO method. Since the method follows the visual diagnosis mechanism of clinical experts, the model interpretation results can be presented to clinical experts intuitively, and the quantitative information provided by the model is also a good diagnostic reference.

Funder

Core Research for Evolutional Science and Technology

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Reference36 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3