Restoration of complex movement in the paralyzed upper limb

Author:

Hasse Brady A,Sheets Drew E G,Holly Nicole L,Gothard Katalin M,Fuglevand Andrew JORCID

Abstract

Abstract Objective. Functional electrical stimulation (FES) involves artificial activation of skeletal muscles to reinstate motor function in paralyzed individuals. While FES applied to the upper limb has improved the ability of tetraplegics to perform activities of daily living, there are key shortcomings impeding its widespread use. One major limitation is that the range of motor behaviors that can be generated is restricted to a small set of simple, preprogrammed movements. This limitation stems from the substantial difficulty in determining the patterns of stimulation across many muscles required to produce more complex movements. Therefore, the objective of this study was to use machine learning to flexibly identify patterns of muscle stimulation needed to evoke a wide array of multi-joint arm movements. Approach. Arm kinematics and electromyographic (EMG) activity from 29 muscles were recorded while a ‘trainer’ monkey made an extensive range of arm movements. Those data were used to train an artificial neural network that predicted patterns of muscle activity associated with a new set of movements. Those patterns were converted into trains of stimulus pulses that were delivered to upper limb muscles in two other temporarily paralyzed monkeys. Main results. Machine-learning based prediction of EMG was good for within-subject predictions but appreciably poorer for across-subject predictions. Evoked responses matched the desired movements with good fidelity only in some cases. Means to mitigate errors associated with FES-evoked movements are discussed. Significance. Because the range of movements that can be produced with our approach is virtually unlimited, this system could greatly expand the repertoire of movements available to individuals with high level paralysis.

Funder

National Institute of Neurological Disorders and Stroke

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3