Use of regenerative peripheral nerve interfaces and intramuscular electrodes to improve prosthetic grasp selection: a case study

Author:

Lee ChristinaORCID,Vaskov Alex KORCID,Gonzalez Michael A,Vu Philip P,Davis Alicia J,Cederna Paul S,Chestek Cynthia AORCID,Gates Deanna HORCID

Abstract

Abstract Objective. Advanced myoelectric hands enable users to select from multiple functional grasps. Current methods for controlling these hands are unintuitive and require frequent recalibration. This case study assessed the performance of tasks involving grasp selection, object interaction, and dynamic postural changes using intramuscular electrodes with regenerative peripheral nerve interfaces (RPNIs) and residual muscles. Approach. One female with unilateral transradial amputation participated in a series of experiments to compare the performance of grasp selection controllers with RPNIs and intramuscular control signals with controllers using surface electrodes. These experiments included a virtual grasp-matching task with and without a concurrent cognitive task and physical tasks with a prosthesis including standardized functional assessments and a functional assessment where the individual made a cup of coffee (‘Coffee Task’) that required grasp transitions. Main results. In the virtual environment, the participant was able to select between four functional grasps with higher accuracy using the RPNI controller (92.5%) compared to surface controllers (81.9%). With the concurrent cognitive task, performance of the virtual task was more consistent with RPNI controllers (reduced accuracy by 1.1%) compared to with surface controllers (4.8%). When RPNI signals were excluded from the controller with intramuscular electromyography (i.e. residual muscles only), grasp selection accuracy decreased by up to 24%. The participant completed the Coffee Task with 11.7% longer completion time with the surface controller than with the RPNI controller. She also completed the Coffee Task with 11 fewer transition errors out of a maximum of 25 total errors when using the RPNI controller compared to surface controller. Significance. The use of RPNI signals in concert with residual muscles and intramuscular electrodes can improve grasp selection accuracy in both virtual and physical environments. This approach yielded consistent performance without recalibration needs while reducing cognitive load associated with pattern recognition for myoelectric control (clinical trial registration number NCT03260400).

Funder

National Institute of Neurological Disorders and Stroke

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3