ADHD classification with cross-dataset feature selection for biomarker consistency detection

Author:

Meng Xiaojing,Chen Ying,Gao YuanORCID,Geng Deqin,Tang YibinORCID

Abstract

Abstract Objective. Attention deficit hyperactivity disorder (ADHD) is a prevalent neurodevelopmental disorder in children. While numerous intelligent methods are applied for its subjective diagnosis, they seldom consider the consistency problem of ADHD biomarkers. In practice, these data-driven approaches lead to varying learned features for ADHD classification across diverse ADHD datasets. This phenomenon significantly undermines the reliability of identified biomarkers and hampers the interpretability of these methods. Approach. In this study, we propose a cross-dataset feature selection (FS) module using a grouped SVM-based recursive feature elimination approach (G-SVM-RFE) to enhance biomarker consistency across multiple datasets. Additionally, we employ connectome gradient data for ADHD classification. In details, we introduce the G-SVM-RFE method to effectively concentrate gradient components within a few brain regions, thereby increasing the likelihood of identifying these regions as ADHD biomarkers. The cross-dataset FS module is integrated into an existing binary hypothesis testing (BHT) framework. This module utilizes external datasets to identify global regions that yield stable biomarkers. Meanwhile, given a dataset which waits for implementing the classification task as local dataset, we learn its own specific regions to further improve the performance of accuracy on this dataset. Main results. By employing this module, our experiments achieve an average accuracy of 96.7% on diverse datasets. Importantly, the discriminative gradient components primarily originate from the global regions, providing evidence for the significance of these regions. We further identify regions with the high appearance frequencies as biomarkers, where all the used global regions and one local region are recognized. Significance. These biomarkers align with existing research on impaired brain regions in children with ADHD. Thus, our method demonstrates its validity by providing enhanced biological explanations derived from ADHD mechanisms.

Funder

National Natural Science Foundation of China

Xuzhou Medical University Affiliated Hospital Postdoctoral Science Foundation

Xuzhou Medical University Outstanding Talents Start-up Fund

Changzhou Science and Technology Bureau Program

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3