Abstract
Abstract
Objective. Sources of heterogeneity in non-invasive brain stimulation literature can be numerous, with underlying brain states and protocol differences at the top of the list. Yet, incoherent results from brain-state-dependent stimulation experiments suggest that there are further factors adding to the variance. Hypothesizing that different signal processing pipelines might be partly responsible for heterogeneity; we investigated their effects on brain-state forecasting approaches. Approach. A grid-search was used to determine the fastest and most-accurate combination of preprocessing parameters and phase-forecasting algorithms. The grid-search was applied on a synthetic dataset and validated on electroencephalographic (EEG) data from a healthy (n = 18) and stroke (n = 31) cohort. Main results. Differences in processing pipelines led to different results; the grid-search chosen pipelines significantly increased the accuracy of published forecasting methods. The accuracy achieved in healthy was comparably high in stroke patients. Significance. This systematic offline analysis highlights the importance of the specific EEG processing and forecasting pipelines used for online state-dependent setups where precision in phase prediction is critical. Moreover, successful results in the stroke cohort pave the way to test state-dependent interventional treatment approaches.
Funder
Defitech Foundation
Wyss Center for Bio and Neuroengineering
Personalized Health and Related Technologies (PHRT) of the ETH Domain
Subject
Cellular and Molecular Neuroscience,Biomedical Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献