Optimization of phase prediction for brain-state dependent stimulation: a grid-search approach

Author:

Bigoni ClaudiaORCID,Cadic-Melchior Andéol,Morishita Takuya,Hummel Friedhelm CORCID

Abstract

Abstract Objective. Sources of heterogeneity in non-invasive brain stimulation literature can be numerous, with underlying brain states and protocol differences at the top of the list. Yet, incoherent results from brain-state-dependent stimulation experiments suggest that there are further factors adding to the variance. Hypothesizing that different signal processing pipelines might be partly responsible for heterogeneity; we investigated their effects on brain-state forecasting approaches. Approach. A grid-search was used to determine the fastest and most-accurate combination of preprocessing parameters and phase-forecasting algorithms. The grid-search was applied on a synthetic dataset and validated on electroencephalographic (EEG) data from a healthy (n = 18) and stroke (n = 31) cohort. Main results. Differences in processing pipelines led to different results; the grid-search chosen pipelines significantly increased the accuracy of published forecasting methods. The accuracy achieved in healthy was comparably high in stroke patients. Significance. This systematic offline analysis highlights the importance of the specific EEG processing and forecasting pipelines used for online state-dependent setups where precision in phase prediction is critical. Moreover, successful results in the stroke cohort pave the way to test state-dependent interventional treatment approaches.

Funder

Defitech Foundation

Wyss Center for Bio and Neuroengineering

Personalized Health and Related Technologies (PHRT) of the ETH Domain

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3