Decoding of voluntary and involuntary upper-limb motor imagery based on graph fourier transform and cross-frequency coupling coefficients

Author:

Feng NaishiORCID,Hu FoORCID,Wang Hong,Gouda Mohamed AminORCID

Abstract

Abstract Objective. Brain-computer interface (BCI) technology based on motor imagery (MI) control has become a research hotspot but continues to encounter numerous challenges. BCI can assist in the recovery of stroke patients and serve as a key technology in robot control. Current research on MI almost exclusively focuses on the hands, feet, and tongue. Therefore, the purpose of this paper is to establish a four-class MI BCI system, in which the four types are the four articulations within the right upper limbs, involving the shoulder, elbow, wrist, and hand. Approach. Ten subjects were chosen to perform nine upper-limb analytic movements, after which the differences were compared in P300, movement-related potentials(MRPS), and event-related desynchronization/event-related synchronization under voluntary MI (V-MI) and involuntary MI (INV-MI). Next, the cross-frequency coupling (CFC) coefficient based on mutual information was extracted from the electrodes and frequency bands with interest. Combined with the image Fourier transform and twin bounded support vector machine classifier, four kinds of electroencephalography data were classified, and the classifier’s parameters were optimized using a genetic algorithm. Main results. The results were shown to be encouraging, with an average accuracy of 93.2% and 92.2% for V-MI and INV-MI, respectively, and over 95% for any three classes and any two classes. In most cases, the accuracy of feature extraction using the proximal articulations as the basis was found to be relatively high and had better performance. Significance. This paper discussed four types of MI according to three aspects under two modes and classed them by combining graph Fourier transform and CFC. Accordingly, the theoretical discussion and classification methods may provide a fundamental theoretical basis for BCI interface applications.

Funder

National Key R & D Program

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3